Arm Community
Arm Community
  • Site
  • User
  • Site
  • Search
  • User
Arm Community blogs
Arm Community blogs
SoC Design and Simulation blog 5 Reasons Why In-Chip Monitoring is Here to Stay
  • Blogs
  • Mentions
  • Sub-Groups
  • Tags
  • Jump...
  • Cancel
More blogs in Arm Community blogs
  • AI blog

  • Announcements

  • Architectures and Processors blog

  • Automotive blog

  • Embedded and Microcontrollers blog

  • Internet of Things (IoT) blog

  • Laptops and Desktops blog

  • Mobile, Graphics, and Gaming blog

  • Operating Systems blog

  • Servers and Cloud Computing blog

  • SoC Design and Simulation blog

  • Tools, Software and IDEs blog

Tags
  • voltage supply monitor
  • 16nm
  • process detector
  • finfet
  • embedded monitoring ip
  • moortec
  • temperature sensor
  • 28nm
Actions
  • RSS
  • More
  • Cancel
Related blog posts
Related forum threads

5 Reasons Why In-Chip Monitoring is Here to Stay

Moortec
Moortec
May 26, 2016
2 minute read time.

When the first car rolled off his production line in 1913, Henry Ford would have already envisioned just how prolific the automobile would become. However, would he have foreseen the extent to which monitors and sensors would become critical to the modern internal combustion engine?

Henry Ford.jpg

The requirement for energy efficiency, power performance and reliability in high volume manufactured vehicles has caused monitoring and sensor systems to increase in number and complexity in order to manage dynamic conditions and understand how each engine has been made. By the same principle, in-chip monitors are here to stay.

 

Understanding dynamic conditions (voltage supply and junction temperature) as well as understanding how the chip has been made (process) has become a critical requirement for advanced node semiconductor design. So, we should not only get used to in-chip monitors and sensors but also understand the problems they solve and what the key attributes are for good in-chip monitors.

PVTpng.png

Here are five reasons why in-chip monitoring is here to stay for low geometry designs on technologies such as 40nm, 28nm and FinFET.

1. Gate Density

The benefits of increased gate density drive the modern world by allowing for increased complexity of our electronics for a given area. However, there are drawbacks as increased gate density leads to greater power density and hence localised heating within the chip, or hot spots. Increased density also leads to greater drops to the supply voltage feeding the circuits. High accuracy temperature sensors and voltage supply monitors throughout the design of the chip will allow the system to manage and adapt to such conditions.

2. Product Differentiation

Capitalising on high accuracy monitors and sensors which are proliferated throughout the design will give products a leading edge in the marketplace. Sure, semiconductor design teams will be judged by product features and other ‘bells and whistles’ but what also counts is reliability and comparable performance to competitors.

3. Accepting Greater Chip Process Variability

The variability in how each semiconductor device is manufactured widens as geometries shrink. We’ve discussed how there are benefits to understanding how the dynamic conditions of voltage and temperature change on chip but how about fixed conditions of how each device has been manufactured? Process monitoring, hence determining the speed of the digital circuits, how they react to dynamic changes and how they will age, will allow for optimisation and compensation schemes, making the most of how each particular chip has been made.

4. Increased Reliability

The innate intolerance to electronic faults within the automotive and telecoms sectors is an attitude now spreading to the enterprise and consumer sectors. Accurate monitoring allows for fault detection and lifetime prediction, primarily by sensing the main contributors to circuit stress such as prolonged high supply voltage and the consequences of localised thermal heating with respect to electro migration.

5. Generational design improvement

Armed with the knowledge of how your last 10 million semiconductor devices served their market applications through their lifetimes is key information for your next generation of product design. How do your end customers utilise your devices? This will allow designers to tolerance their designs appropriately ‘next-time-round,’ by understanding the environmental conditions under which they are placed.

In summary, we should be prepared that our desire for more in-chip information, and not just simply data, to differentiate products will cause monitoring and sensing systems to evolve beyond what we can predict today. It is safe to say that in-chip monitoring, particularly for the advanced node technologies, is here to stay.

For more information about in-chip monitoring visit: http://www.moortec.com

Anonymous
SoC Design and Simulation blog
  • Performance verification with AMBA Viz

    Tony Nip
    Tony Nip
    Run consistent latency and bandwidth checks on CMN interconnects using AMBA Viz’s new performance script—no API expertise needed.
    • June 30, 2025
  • Understanding Scandump: A key silicon debugging technique

    Vincent Yang
    Vincent Yang
    Scandump is highly effective in silicon debugging as it can capture most internal states through scan chains, making it invaluable in diagnosing silicon issues.
    • June 5, 2024
  • Introduction to AMBA Viz

    Tony Nip
    Tony Nip
    AMBA Viz enables faster debug and performance analysis for cycle-accurate simulation and emulation, even for complex interconnects and AMBA bus protocols.
    • May 31, 2024