This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

Take full advantage of SVE vector length agnostic approach


I have the following piece of code:

template<int bx, int by>
void blockcopy_sp_c(pixel* a, intptr_t stridea, const int16_t* b, intptr_t strideb)
    for (int y = 0; y < by; y++)
        for (int x = 0; x < bx; x++)
            a[x] = (pixel)b[x];

        a += stridea;
        b += strideb;

So, after bx*16 bytes, we need to jump to another location in memory and read/store bx*16 bytes again, and so on.

One possible ASM code for NEON to support the aforementioned function is the following (assuming that bx=by=4):

function PFX(blockcopy_sp_8x8_neon)
    lsl x3, x3, #1
.rept 4
    ld1 {v0.8h}, [x2], x3
    ld1 {v1.8h}, [x2], x3
    xtn v0.8b, v0.8h
    xtn v1.8b, v1.8h
    st1 {v0.d}[0], [x0], x1
    st1 {v1.d}[0], [x0], x1
However, the only way to use a post-index, register offset in SVE seems to be the gather loads and scatter stores. So, a possible ASM code for SVE2 to support the aforementioned function is the following (assuming that bx=by=8):
function PFX(blockcopy_sp_8x8)
    MOV x8, 8
    MOV x9, #0
    MOV x6, #0
    MOV x7, #0
    MOV z31.d, #64
    MOV z0.d, #0

    WHILELT p1.d, x9, x8
    B.NONE .L_return_blockcopy_sp_8x8

    INDEX z1.d, x6, x3
    INDEX z2.d, x7, x1
.rept 2
    LD1D z3.d, p1/Z, [x2, z1.d]
    ADD z1.d, z1.d, z31.d
    UZP1 z3.b, z3.b, z0.b
    ST1W z3.d, p1, [x0, z2.d, UXTW #2]
    ADD z2.d, z2.d, z31.d
    INCD x9
    MUL x6, x9, x3
    MUL x7, x9, x1
    WHILELT p1.d, x9, x8
    B.FIRST .L_loopStart_blockcopy_sp_8x8
However, I do not believe that this code takes full advantage of SVE vector length agnostic approach.
For example, the LD1D instruction reads only 64 bit before it jumps to the next location in memory.
So, it might be the case that the z3 register is not fully loaded with 16bytes of data.
Can you please tell me what I am doing wrong?
Thank you in advance.
Parents Reply Children