This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

prefix sum with Opencl

Hi, I am accelerating a image processing algorithm with OpenCL on the cellphone, however I met a case which had a very poor performance.

The case is to calculate the prefix sum of each row on the image (a 2D buffer). For example, a 3x3 image:

50   32   10

48   45   100

30   80    10

the result should be:

50  82  92

48   93 193

30  110  120

That is for each row store it's prefix sum. My opencl kernel is somewhat as follows:

__kernel void scan_h( __global int *dst,
    __global int *src,
        int width, int height, int stride)
{
    int x = get_global_id(0);

    int data;
    data = 0;

    int i;
    for(i=0; i<width; i++)
    {
        data += src[i + x*stride];
        dst[i+ x*stride] = data;
    }
}

 

it needed about 100ms to finish a 3000*3000 image.

Another experiment show interesting result. If I calculate the each column prefix sum with the kernel as follows, the run-time is only 4ms.

__kernel void scan_v(
    __global int *dst,
    __global int *src,
        int width, int height, int stride)
{
    int x = get_global_id(0);


    int data = 0;


    int i;
    for(i=0; i<height; i++)
    {
        data += src[x+i*stride];
        dst[x+i*stride] = data;
    }
}
 

I do know why is the difference. So a work around for the row prefix sum is to tranpose the image first and then perform column prefix sum followed with another transpose.

But I strongly wonder why the native row prefix sum is so slow?

  • What is the value of stride in the two examples ?

    My guess would be that access to contiguous memory locations lead to better use of the GPU memory cache lines, improving the overall performance.

  • Hi,

    Your code is performing scalar memory accesses and arithmetic operations. Midgard GPUs use a vector architecture. I suspect in the case of scan_v the vectorisation is trivial and therefore the compiler does it automatically whereas in the case of scan_h it's more tricky therefore the compiler probably doesn't make any optimisation.

    Try to use more vector operations, and also try different shapes of local workgroup sizes in order to try to optimise cache locality between threads.

    Hope this helps,

    Anthony

  • Yes, that's pretty much guaranteed to the be the problem. Running tangentially to the memory layout means that you're guaranteed to thrash the cache / MMU TLB, so transposing one of the inputs is always a good idea.

  • in most cases, the stride are the same with the width. (more practically, it is the value of 128 bytes alignment of the width)

  • Thanks.

    I tried the vector operations, it really increased the performance a lot.  sigh~~

    The tunning results of the following three kernels were 47ms, 19ms, 19ms, respectively. (half or quarter time consumption of the origin kernel).

    __kernel void scan_h_8(

        __global int *dst,

        __global int *src,

            int width, int height, int stride)

    {

        int x = get_global_id(0);

        int data;

        data = 0;

        int2 value;

        int i;

        for(i=0; i<width; i+=2)

        {

            value = vload2(0, src+x*stride+i);

            value.s0 += data;

            value.s1 += value.s0;

            data = value.s1;

            vstore2(value, 0, dst+x*stride+i);

        }

    }

    __kernel void scan_h_16(

        __global int *dst,

        __global int *src,

            int width, int height, int stride)

    {

        int x = get_global_id(0);

        int data;

        data = 0;

        int4 value;

        int i;

        for(i=0; i<width; i+=4)

        {

            value = vload4(0, src+x*stride+i);

            value.s0 += data;

            value.s1 += value.s0;

            value.s2 += value.s1;

            value.s3 += value.s2;

            data = value.s3;

            vstore4(value, 0, dst+x*stride+i);

        }

    }

    __kernel void scan_h_32(

        __global int *dst,

        __global int *src,

            int width, int height, int stride)

    {

        int x = get_global_id(0);

        int data;

        data = 0;

        int8 value;

        int i;

        for(i=0; i<width; i+=8)

        {

            value = vload8(0, src+x*stride+i);

            value.s0 += data;

            value.s1 += value.s0;

            value.s2 += value.s1;

            value.s3 += value.s2;

            value.s4 += value.s3;

            value.s5 += value.s4;

            value.s6 += value.s5;

            value.s7 += value.s6;

            data = value.s7;

            vstore8(value, 0, dst+x*stride+i);

        }

    }

  • Hi, all:

    Here is the newest effort.

    After taking the advice from Anthony, the performance is 4x faster against the origin kernel. Further more, I made a try to transpose the image, than employed a vertical prefix sum, finally another transpose. The state-of-art result is less than10ms.

    To summary, for a 3968x2976 image (int datatype for each pixel):

    1. the vertical prefix sum costs 2.5ms~4.5ms (differ caused by DVFS).

    2. the original horizontal prefix sum (without vectorization) costs 70ms~100ms

        after vectorization, the time consumption drops to 20ms

        further, replace the horizontal prefix sum with two transpose and a vertical prefix sum, it costs 6ms~10ms.