Arm Community
Arm Community
  • Site
  • User
  • Site
  • Search
  • User
Arm Community blogs
Arm Community blogs
Architectures and Processors blog Cortex-A17 powers new generation of Chrome OS devices
  • Blogs
  • Mentions
  • Sub-Groups
  • Tags
  • Jump...
  • Cancel
More blogs in Arm Community blogs
  • AI blog

  • Announcements

  • Architectures and Processors blog

  • Automotive blog

  • Embedded and Microcontrollers blog

  • Internet of Things (IoT) blog

  • Laptops and Desktops blog

  • Mobile, Graphics, and Gaming blog

  • Operating Systems blog

  • Servers and Cloud Computing blog

  • SoC Design and Simulation blog

  • Tools, Software and IDEs blog

Tell us what you think
Tags
  • Processor
  • Cortex-A17
  • chrome_os
  • chromebook
  • Cortex-A
  • blog
Actions
  • RSS
  • More
  • Cancel
Related blog posts
Related forum threads

Cortex-A17 powers new generation of Chrome OS devices

Lionel Belnet
Lionel Belnet
April 9, 2015
3 minute read time.

Last week, several of our partners unveiled new Chrome OS devices powered by Cortex-A17 based processor. These new products include two Chromebooks from Haier and HiSense at very competitive low price, a convertible laptop-tablet called the Chromebook Flip and a brand new kind of HMDI dongle called Chromebit, both from Asus.

Picture1.jpg

Following Cortex-A17’s top score in Antutu’s “Best Performance Android Smartphones 2014”, these new devices re-affirm the capabilities of Cortex-A17 CPU in combination with ARM Mali-T760 GPU, to provide a high-performance computing experience in devices such as tablets in highly cost-effective implementations.

The announcement of these new devices is a very good opportunity to review the characteristics of the Cortex-A17 that make it a success in many popular consumer products like smartphones, tablets and OTT devices that require highest performance in thermally constraint form factors.


Cortex-A17 - A Balanced design for premium performance and cost efficiency

Cortex-A17 is the third generation of ARMv7-A out-of-order processors, following successful products as Cortex-A9 and Cortex-A15. Cortex-A17 processor was designed to some very aggressive PPA goals, including:

  1. provide a significant boost of performance over the current generation CPUs with improved branch prediction and out-of-ordering issue capabilities
  2. maintain an optimal power and area profile that fits thermally constrained form factors, especially by keeping a 2-way super scalar architecture
  3. build a micro-architecture that is tuned and optimized towards mobile workloads through for instance better use of the memory system

  This enables Cortex-A17 to provide best single thread performance for 32-bit application over any other ARMv7-A cores.

Picture4.png

The single thread performance is critical for the user experience as it is at the heart of key applications like user interface and mostly web browsing. If Cortex-A17 and Cortex-A15 have similar SpecInt2k results, Cortex-A17 exceeds Cortex-A15 performance for web browsing, enabling the new Chrome OS devices to score better than previous 2014 successful devices.

Picture2.png

Source arstechnica.com

Cortex-A17 achieves higher performance on benchmarks representative of today's complex and demanding real-world web applications running on mobile and desktop browsed such as kraken, octane, sunspider. This is achieved through a combination of design optimization, especially around memory system and streaming performance. These optimizations are designed in an optimal power and area profile to result into a better power efficiency. Better power efficiency allows sustaining maximum frequency before hitting thermal limits on the SoC and so directly translates into performance uplift. Area is also a significant part as it contributes to silicon cost as well as leakage power. The Cortex-A17 has been extensively tuned, and is considerably more area and power efficient than Cortex-A15 and similar to Cortex-A9.

This power efficiency enables our partners to optimize Cortex-A17, especially in a mature and cost efficient node like 28nm. The Cortex-A17 has broad support from ARM Physical IP in 28nm like ARM Artisan POP IP that allows system design with lowest risk and fast-time-to-market.

An optimized software ecosystem is fundamental for a great user experience. Today’s mobile world is based around the ARMv7-A architecture which supports over one million applications across many device categories. The Cortex-A17 processor leverages the popular applications and libraries that are specifically optimized for performance and efficiency on this architecture. New ecosystems around ARMv8-A are being built, and these complement the ARMv7-A ecosystem, particularly where a 64-bit instruction set is a necessity such as in server and enterprise applications.

What’s coming next for Cortex-A17?

We are very happy to see our partners introducing new innovative devices and enabling access to premium performance at a very attractive price. In the coming months, Cortex-A17 will continue to be at the heart of a great number of new mid-range devices while Cortex-A57 will power high-end products. It is today's choice for 32-bit devices that require highest performance in thermally constrained form factors. So we are expecting to see more and more Cortex-A17 devices from smartphone to Smart TV and set-top boxes, but also in key markets with similar technology constraints like home networking, industrial applications and high-end wearable.

Which new Cortex-A17 devices will your imagination build ?

Anonymous
Architectures and Processors blog
  • Scalable Matrix Extension: Expanding the Arm Intrinsics Search Engine

    Chris Walsh
    Chris Walsh
    Arm is pleased to announce that the Arm Intrinsics Search Engine has been updated to include the Scalable Matrix Extension (SME) intrinsics, including both SME and SME2 intrinsics.
    • October 3, 2025
  • Arm A-Profile Architecture developments 2025

    Martin Weidmann
    Martin Weidmann
    Each year, Arm publishes updates to the A-Profile architecture alongside full Instruction Set and System Register documentation. In 2025, the update is Armv9.7-A.
    • October 2, 2025
  • When a barrier does not block: The pitfalls of partial order

    Wathsala Vithanage
    Wathsala Vithanage
    Acquire fences aren’t always enough. See how LDAPR exposed unsafe interleavings and what we did to patch the problem.
    • September 15, 2025