‌vk-gl-cts test failed with error: Buffer verification failed

Hi,

    ‌I am running the vk-gl-cts tests on our development board (equipped with a Mali-G52 GPU), and some test cases failed with the log indicating "Buffer verification failed" as the cause.By inspecting the result image against the reference image, an inconsistency can be observed where a row of pixels in the result image deviates from the reference image.

For example, case dEQP-GLES2.functional.buffer.write.random.7: the following image can be parsed from its .qpa file

Repeated executions of this test case yield varying error manifestations across multiple test runs.

What are the possible causes of this issue?

A sample qpa file as below

================================================================================

#sessionInfo releaseName unknown
#sessionInfo releaseId 0xcafebabe
#sessionInfo targetName "Default"
#sessionInfo vendor "ARM"
#sessionInfo renderer "Mali-G52"
#sessionInfo commandLineParameters "--deqp-case=dEQP-GLES2.functional.buffer.write.recreate_store.different_target_2 --deqp-archive-dir=/data/local/tmp/"

#beginSession

#beginTestCaseResult dEQP-GLES2.functional.buffer.write.recreate_store.different_target_2
<?xml version="1.0" encoding="UTF-8"?>
<TestCaseResult Version="0.3.4" CasePath="dEQP-GLES2.functional.buffer.write.recreate_store.different_target_2" CaseType="SelfValidate">
<Text>glGenBuffers(1, 0xbef43970);</Text>
<Text>// buffers = { 1 }</Text>
<Text>glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 1);</Text>
<Text>glBufferData(GL_ELEMENT_ARRAY_BUFFER, 716, 0xb5f8ec60, GL_STATIC_DRAW);</Text>
<Text>glGetError();</Text>
<Text>// GL_NO_ERROR returned</Text>
<ImageSet Name="RenderResult" Description="Bytes 0 to 707">
<Image Name="Result" Width="472" Height="8" Format="RGBA8888" CompressionMode="PNG" Description="Result">
iVBORw0KGgoAAAANSUhEUgAAAdgAAAAICAYAAABakO4CAAAYQElEQVRogXWaTYhs
3XrXf2vt7/rY1VXdp7v6vOe8bwzR+JEoGsELcWAGSnCiQQLCxYEDFTSDDMxFvKAo
DsSRQw3oC2L8IIgiBEd+kGvuIAmioLkYb/LCPX36u6q7au9d+2PttZeDtWrXrj79
Dh7+66lJD3/9+z9b/NLZz5utV7GRJVuvZDvIjVfyMz/2z6jEgx3uqfdv8UAl7vn5
/6F5eHfJw/slj++WPLxf8vDusn//pZ/8G6QTQToVNieC6WD/udvPiVVJoiripiJW
dhL3/uJv/iLifoN4eEb2+Yx42CDun0m/23K11VxlnUvN1bbr8zu/8mf4OB/zcT7i
43zM1WJ0tP/S/6q58xX3geIuaGz6ivug4S5Q/PSXXyH9Z2TwjPSfEf7G7m7+1V/+
Fu/CMe+C8av5T773O8QPOfF9RvKQ2bzPiN37J7/zHe5u33F39/7V/GM33+PkTDF/
o5if2Tnp3w3/oOqIVvJr539/91u0uxRVpqhdSlvOXNr9e19dQLOB5vnV/HL3h1ir
mrWqWKuaJ5fr1uZf/OyJ3F+Q+/NDejYzf8Ff/fIfsU6+4Cn+nCeX6+QLnpLPeYq/
YPVzf543q4Tz1Yg3qxFvVolL+/72L/8El6Lkrai4pOJSVFyK0mXFT/3yA2EaE6Ux
YRq5jN1vEU/bf0t4pQivFMFV07/Dq4bgSvGrf2TOsjZcNh3L2rBsDJe1YVl3LBvD
v/jvFSMmJEwYvZiECV/+z98mrZbM6gvSeuneS9L6glm15Be+/6dJThNGZwnJ2chl
0udv/GOFXxr8Evydy9Lg72y+/5k/yqjKGFUZictRmTGqckZVxs/+2T+HEQYjOxAd
RnYYcXj/hT/xhlHWMMoV46xhlDV9jnKF/91f595ruZftq/m3fv27mLcbzOUGc7nF
XG7oBrv+T3+cSVozThsmaW1ntn83/PVfSzD1GlM/QfNk0+2meeJPfeMXkeoOoW6R
6hah7o7yv/yb30PSLEjqOaNmQdLMSepF//613/4GXZOjm9xlRlfn/W9/5WevKL/Y
UX5RUP2QzXKfX+wo8jekUjOVncuWVHZMpSaVLU/FW8SHCulG9FkjP1T8y3/+1yhu
U3a3U3Z3U3a3KcXt1O0p8h/+B87WO9487Thb7zh72vFmkOd/+58SiIKA/eRH+2/8
9I8x3vqMsoBx5tsZ7D/67zT+8prg4gZ/P8vr/v0LP/X3yMMNRbghj1yGG/JwSxFt
+OLbf5JoJQlfHY8vzy9RC4GaY3PB4T2H/7j5CbT4MJgfHO1//1e+TTydEKVj4umE
OJ24tPuPnPwdwtsx4c3Y5ajfg9sx//r736A1Da1p0KahNepo/6FvTfBOJN5M4s88
vJk8mn//Xz9H3inkrULeKbw7m/JOIe4U3/y7MZv0kc3swWb6yPPs0f32yDf/8zeZ
JhGTJGaaRHZGERP3/sav/jcmRcN4pxi7nBQN40Ix3jX4j1HKVgZsPZ+t9Nl4gdsD
RNqy0oZKGCoMlYBauF0YUIJiGVEsQ4plSL6MKC4i9w5JVxnxxCeeCOKxsDkRJBNB
MhZsYzgbb3qwJkF5gKxfcfuU8ig8hJAI4SGFRAiJ3P+2VGTPBR+zjo9bPUjNx23H
pX9KsZTkc0E+l+QLQTE/7ItVzV2ruRctd7LlXmruROt2jac9lBcjvRgp7QhZ27cX
oxdLZk3MzLw+1+01Wq3RTYZW2SFVhm5yymVCnsfkxeu5CNaMxmvGY8VoPxPV77tq
xsgUREYS8ekU85K88FA7D1V6tDsfVdq9LT0ujSLwHsF7Bm/zSU7T99yy6AH71B5A
u1YVb7cZmzYkZ0HOvM+MBbmYs6ihMecoN42b/b48aTDRGYtoxDxKmB/liDy8JWwf
CEVFICoCUbqsCEXFx1XKSSqIUghTiFJBONjrqkFdJ4hrD9wIN1x7hGnJ9PSSaW2Y
NoZp3Q3ehue7lufbWxqiV6eUHmV0RmhOCTkj4IzQnBFid78rqUsfr/LxqsBmuZ+A
pTaobIIpwezMcZaGc7PBtBWmrTGqhv20NagK6po3emphahxUuw4jDYiO+LnAK0O8
ErydmxJkaXO3SxiLBE2LFu0n+WYSIxcV3byGRQ2LChYVcl5jFjXPwYR6UqOmdtpp
QztIL3viLAkw8gkjn0CuXdr9MZkgshLUDqF2oMqjDLsLxqcpoyYlqfc5I2nsO6hb
RveSrpHoxubwnacZVTilCj2qUFKGHuUgzZNhHoSkaKZoUiRTvH4v246yVMiyRZYt
wqV9K5LOZ1ZqglITVprQve3eUY+vGWc5k2zHONsxcbN/jy4CRuH6awGrnxXmBy0m
A5MJzBb3tru6kJzGV/jRDX58QxBf48c3/f7IO2K9pdVbdLel1dlhui26vGB8awhX
hnAF4Qoil+EKNrrgfK5QJw6wcw7vE1h1M8KHHC2GU/Tvp/SCixOfeOoRpz7x1CdO
fSK3P35YEQU1YeF9MkHh0QZzTPCMMQ2YBmMajFH9Ppol5Cc7vJmHv4fqyQGus8eI
08cK+aiQK4W3UshHhXhUeI8KE3U8TBSbScZmnLOZuBnnbCYZ4jniKW5pY482UbSJ
pE08u8ce4YcN6dOYcRE4wAZMdo3dC0XejfFXYXoE1Y2DrUhbxCxkpaESOMAaamF3
lHCADR1kD2AtlhHpOifYBAfAvphNAlViOBttiANrr4kDa6xKbquUrIvwsXAVOLBi
QcuFQsgGNsULa7U2u/ROuRQJ+VJaqC6khezc7qerGi/zuNeGO+kgK1ruheZOtnit
h4dEObBKB1rh1T1c9UIwqxNm5tO5bm/IvTu0WqFVZv+jHkB2txwhI9/CtIiPsigs
XKNOMhqvj6C6n7KaoYXHKCotUF9AdjcvqXVJVhyAegCtxyWKhYHAy74WrmlwyW27
YN0OzNXl2+2WM2HY6IBczMnFgkwcILuoYdbyKVix74uZYjLrqKKzT8C6iBKK8JYq
3BK0jwSiJHRQtVNytZpRrSXzFAdV4SBr97qq8WpBcx0fwZUBXMWkZXp6SVobB9au
fz/faZRseb5Z0xDSEFK7bAgpPUkkJdXIQjXgjLAHrIWrbBua0sd3UPUdbP3KZ9l1
zDqJ2k4xpfkEsudsWJiOSjmYtnaMcrCta6gqzveA7bqDxXYdcV4QZx5y5wD7Yna7
hG7nEZN8PVynMWJRIxcVZl5h5jWdA+0mmLANAsppNQBrjZo2KAfXMl9zFnuYF2BF
rC1ciRCZhatwUN1n1F0Q6ZjJacqoTkmaWQ/apJkR1i1hTQ/Yl5DN0wzZZZThpQOq
ncqNWRu6uGW+DJmKjlRopqJ1KSnbjkYLqqpFVgpRKWSlkFWLqFqSzsdowUnVDeDa
EVQWtvX4Gl/vGG8tYCdbB9atg+t5wHjhfS1g9ZPCFArzoXVgFQe4bkEtJTLWnMYf
8eNr/OiGwIHVj695NO9R5i1xt6Xt9mDd0nZuygs0bxjf7oFqjmajCwpdcX6iHFwF
6uQA2VU3I+5GhA/FC8Ae4FpFoQPsAa77fPiwQn3Mic4qwkK+gKukDea0OoTweQDX
BoyycE0T4rQjO2kOcB3MbBVh1pLTxwrv0YJVPirEysKWuAO/43FcO7BmPI8zC1sH
V5HDU9L2UFWxRxsr2lgSftjQXBVMn0YvwGphm3ew68B/jKbOXP0jc2UWINKA1ePB
Xi1gDcbBFSXIf78z2IsDaNNVRrAN8LcBycS3xjqw2G1iKGMoYwfYHqwVSVBxs7Zw
zboI/YrBiqVCiAakot7kR5XwVaa59E5ZyhGXcky+FOQLSbG32LlgsWrwMomXSe60
PMBVtg6uPg7prxrsHq76FGbNAKzYvGlvyLw7MnmHbrZoldGqg73uLkbI2EdEvoVq
nvRZFDFzf00UeISdZDRZ91AdTw7mqoWHFpJRtPvEXHcnFVVXUndDwPpH5roA5oZX
DTZN3zMNLkn9Jbf1gif1qbmeCcOZMDy1J2QDe81ZsKgNMw1p+7rBLk8aJjOPycxj
6wC7cGBdOHOtwowq3L5qsFerlHotqVaSk88+NVgLV/Aq0RvsEK5RukNMWsSkJV1c
9saaOsg+32mUp1Fey/Pt775qrpHnEUmP8kdPCBxUQ84IzCm+KZG6QWpFUwXWXsuD
vV5qw6wzzLrOGuyOI8iemw0LOhZGc+3stQdrW0Ft7ZW65rydgKuFTWdAdsRZQZT5
xJkPZdBDVTqT3e1iutKj23lMRUJLSyvaPs8mMd40Rk5ixLxy9lo7e614DiZsg5Bt
EFBMa9TkAFY1rfGzJ8rcATYx1mDFwWAtXGMEMXwoEWpvsTb3cI26hMkitmB19ro3
17A2hDWMHxxY6wNkizRDGDtl+PsoQ3lksd26w0QKEysL2Bf2WqoKpQWqk1Sf2Ksi
1j5Gg+kEJ+XAXB1o6/ENnt7htTsmWf6JvY4vHFwXklG0HsC1IBC5hevOzSsGq5YS
GXXIqOM0unL2etODdg9XZd4S7cG6h6u25tpxjuYNo9tdb7B7e33WOwpdUeiS83kz
gKvozTXuEmKTOIMtXoVrVYUsZwd7jVJrs48Ors3HguhHqlfM9YS2DWnbsDfYg8Uq
RmlMnHZEM8PtbPequZqVhJXkdFXhray1yoG54tu5n2RsxtmRvYpNhMgMIoMnB9Q2
8VCJR5tYc62vCuqrHdOnH2ZSKMY7a63jIujhujPgP4bpkb2KmTVXkQaIWcDqlr4S
Hprr0GDzgcGmawvXYGMBOzTYZCLYxhauVWIoE8PZaEusyt5ib58OcM26iJ2Da18N
LxVIhRAKIRXbTXFUD196p1zKEUsx4lKOyC9fmusBrl7mcd/63AtbD9+Lg7lKJJ4R
nxhsu0jQCyxgF3BSx5yYw9yo6x6uubxDq9pZq70PlRcJIvaRkY+M9wZ7mHnwRKQl
YSetwQbrvhoemmsrJBqP0aw8wNVIdicldVdRdweDbZ25qp3HW2eucwMLPgVsmn7O
1L8kDezc7eZHN9e3m20P11Nh+EpfWIMdmGvaGlL9wmBxtbAz18mJncfwjEU4Yh6O
mIeJg+vWTUagjg324zqlWntUK2kN9g8cwBqm0FQ1ugZdga4F6qMz2I92orRETHQP
2OnpW6Z1RzqohZXUblqebw/W2hBSSmuuPWD/8MFae3PVDbJVSG0N1iuttXpVwKUD
60xbg222E7oSup2hK7FwNZoFmoXp+KgqWwm3rh6u6h6u1DXneorpuh6y8XNBnPnE
uQXsVRn21fDQXPVO2sRVxG7eTCxYPZdyUWPmFZ0D7SaYsg0CMjeb6QY1qIa9bE1Z
DAD7WXtksI+xg6uwgBXfOzbYSF8Q6YSwi4l0wuS9sfZaW8iGdUtQ0wP2ZUWc7+Ha
2bQV8aEW7tYGEyu6uMVEijmRA2xra2HV0XSCRktrsKVCDGriRPvQCegAbQF7DNdr
fF3itzs8vWOcFUe18PjCZ7TwGC8k41NnsAPA6uemhyuFwmyODVZdOLjGGhk5g42u
e3t95B2Kt/3E+gfOWq3F6vIC7eCqxTnj26+ODHajC3a6coCt+OG5+hq4jpzB3r4C
14CqCq3BLj411+Y6R10XqOucqNgDVva1cNtGtEGIbkNMcA2DiniUJsQzQ5Qa4tS4
ilj2NXG6CjFrCWuJWUnOHisL1xfmimfztyY5z5PcQTY7wDV3gH2/N1gL2ujDhvpD
4QBbkG5/vAfrZKfIurGFa2+wYcrWVcQWrgGkQQ9Ze4Olv7kOxwxusPubq78NLGCd
wcZjf1ALG6oEysRQOdCejzf9B0031XQA15i8i1ADgxXLxoHVJrLh4TnvP3C69J25
ipHL5OgGu1jVPVi9TOLlkv9rhL2/ihbZ+nhIa69G2op4YLB6cYk+hdbBVS8Eb6+P
a+HMs2DN5B2Zd0ei6KvhfS0sI7+H7N5eizzpa+FQW7hGnWQcrgc31xNrrnjOYD1G
7Aa1sAVrpR1gu/0N1t5e35rGwhX6DLyHF3BdOrgumQaX/E42etVc97NpL47M1YLV
GuzshcEOzXU/H6M3fT08NNf9hK3sDfZqnVI5c63XFrDvB9VwXdXoWuBV4LlsrmP4
aA02mpU9WMWkRUxbd4PtmDauFvZaZ6/2vbl9Ya772VfE0bAW3iG1cvZqDbY+urla
qFp7dQY7qIh7uJrOGWx3uLeqg7VS2XqY2lbERnRgrLnGmU+UecRubsrwVXPVO5st
SW+vb5y1SpfeNEYsLFilu7lug+Bonl013E6avhYu8yfKwuZZUvU32NXQXF2KbHBz
1QdzjXRiDfZ0Z2+u9bG5Bq8Atki3vbnuIVuG0/7uavZwdfbaxYo5PlMkKR5l68xV
S2ewgqq3V3tzNR0YLXqDnVV7uHbUk2sL1rYcGGx5uLme+4xPPWev3qEiZnBz3TU9
XNkpzG17dHOVsXZw9ZBxx2l85ez1hkfzrjfX/cTd/7Fg1YdaWAsHWM4Z3f4ukTPY
Z1cLF7qykO0GFfEJrLoT4m7k4JoQd8nRDfZgrkFvsF+c7M3V5/HDI+pjjvpY9LkH
7AGu1ly1jmjbEAYGO54lROkBrtHMHN1g04G5mpWF7GJQEQ/NdT8PfS2c97WwtVeD
yOH59yp3gz2Ya/NhR+MAO+3GjAvF5IW59oBdRVM20rdwTUPEzJqrcJDdf+Q0hOoQ
svnF8c11D9YesM5grbkaKlcNl+4G+wfbTV8L5w6u+cBgcyERHOCKPIbs1f8rDrWw
s1ZbD49YyjG3S0mxkJw+1gewOrh6mcdd7HMvNNKZq2ck9i/KoxusXlwemesesrOv
jm+u2QCuubzjiyZEq4zSwXVorzLyyTexM9cBXAPZvwN3gy2rE1pkXw33FTHl4Oa6
B+uxwVpzbZgbmBvR18OLQUWcTj/voZoGS2exS25Hvru5HsP1tAfsOTkL5s5cZw6w
qauIVy9urntznZx0TGYdi+js6Oa6N9f9BG1LIEo+rmc9XCsH12rl8eOuGt7fXC1c
bT3sVfQVcZSWiGn7ArCayeklae1qYWetRwZ7Y2+v+5vrAbDOYB1gfTOAa9v07+bF
zdWaq3AWK/uK+JznA1xN5wxWg6ox7d5YqyN7pao515OBuXrWXp3BRpnPb7ob7G6X
9NbaA7b00L412DdTZ60DyHqTGDGvYX64uVpzDckcYJ9cLexlB6hag11T5U9cJAVG
Dm6uRAgRHd7ZwFy7xALWwTXSCZPTFUmdEta6h2pYm95iRw+2Hi5mGcLkyM6CVZqh
wXqYJ9OD1Th7NbHiRAhSoSnbmkY7c+1E/y6rGjm4ue7BugftviI+wHWHp0u8doev
SyaZb++vF/4ArM5eB4C1cFWYojnAdXe4wbbu5iojzxnsviK2Brvqa+HPBoD97PCR
U3mBFm9cNXwA7P4Ge2SuXdlD9nzeDG6uthbew/VQEec8pcuBuboMDzfYhw+PND1Y
D5CNiuoAV+3g2ob924QWsON0ANeZIUo74rQjn5XOXCNYS1gLzEr0kD1dVQdz9V4B
7Cu1sLVXZ7BJi0qUheveXF02VzvSZMx415B3oyNzPTJYMdOINLB310E9bA2WT6B6
XBFHr5rrviZO5r6F69BehzdYvRnUwvFRPZx1MSvhwbJBSHt3FVKB2O+Kj7+ZH2rh
I3u1+f3l8c3VwvUA2vsgxNNeXwlLB1YPiTQC5Xno02O46tMDZGdNxE17qIVfGuw7
lbK7SHqgHkE28imunbnua2Fnr/u3nqzZlSdHUO0rYuGRUrpa2IK16oagLcmKJW9N
01fCRwZrIJAPn8A19S+ZBtZkb0f6a+G6N9h5zQuwHgz25mvMdTLzmJx4zKOzF7Xw
9oXB5q4W3sPVo1pL6n1F/OLmOoSrV4O6ntqbaw9X3dvr/gb7fNfSOKi2LwF7e3xz
jfqK2MK2il43V7G/wZbB0c3VQvbYYM/Nc2+sdnS/G1U5Y30dsuft1N5cXSUc9/Zq
d68MXjXXbifROw+dJkfm+hKyz629uWbu5jqcLAh4nlbOXC1gq4G9lvkTZ/HG1sJi
YK0DiyXbw9WBVSeEe9B2CZNF68z1GKx7ix3/lquFu+wTe7U32GlfC7+0V1sRG0pV
WaB20oH1ANqqVCSDm+tLgz0pNfXkpq+EvXYPV/se3ywYXwQWrKcWrnt7HZ9KRuHa
wrWww645wLWwN9jhzXUPVhlZkz2Lr3jk/VEtPJxIb2mriyOoas7pesCaV821v8Ge
qFfgOhpUxK+Za0AVuor4pLDm6iph5erhfU0cFtXAXCN0YMFqARthgucervtq2MLV
GmxxsiN9jHqgmpXo62FcRfyaue5r4sfxp7XwUUUct/0HTfWH3RFg66uC6ZsxeTc+
stbh/H/WDRbMswktegAAAABJRU5ErkJggg==
</Image>
</ImageSet>
<ImageSet Name="RenderResult" Description="Bytes 704 to 715">
<Image Name="Result" Width="8" Height="8" Format="RGBA8888" CompressionMode="PNG" Description="Result">
iVBORw0KGgoAAAANSUhEUgAAAAgAAAAICAYAAADED76LAAAAdUlEQVQYlV2OOw6E
MBBDvWNLk5Ltww1Wey9uDXVqUCSCoAAFQvU08vjzGf6/ndGgSDAa1F+MBHuDOifk
BINBgaBbvdNYoK8TdEJuDdO4Ii8F6lxQeInTijxv10No3WkqyHNBXk42Fbe4VdaR
Z+ztfCSo6XzzAO8OVUDs+/JWAAAAAElFTkSuQmCC
</Image>
</ImageSet>
<Text>glBindBuffer(GL_ARRAY_BUFFER, 1);</Text>
<Text>glBufferData(GL_ARRAY_BUFFER, 716, 0xb5f8ec60, GL_STATIC_DRAW);</Text>
<Text>glGetError();</Text>
<Text>// GL_NO_ERROR returned</Text>
<Text>Image comparison failed: max difference = (126, 62, 122, 0), threshold = (5, 5, 5, 5)</Text>
<ImageSet Name="RenderResult" Description="Bytes 0 to 707">
<Image Name="Result" Width="472" Height="8" Format="RGBA8888" CompressionMode="PNG" Description="Result">
iVBORw0KGgoAAAANSUhEUgAAAdgAAAAICAYAAABakO4CAAAYK0lEQVRogXWaS6ht
XXqWnzHGvM+15rrs6/+f/7dQNJZFiA2tEBRBCFINMUJA0CgoCCmU2IgNBUm8JYog
ROzEQgllRMSGkkKiBBG0EMSWIZSpUsuqss6pc86us/de9zXnmrcxbIwxL2vvXY2P
9xurf/ZznvebQn32J4yYgshAZiAyw/j9177+80SeJHYTqdHuSX4yDoj1exL9/oW8
4z/95Be49mKuvJjr0VypmGsv4pN/+C0Orexn34rhrSW/rf4xnknx9ATPpCiX3Tv6
vbfEOiLREbGOXUYkOibWEf/iz/8XvG2Et4nwtiH+Njp7f/F//gx3r5bcvbrg/asL
7l5d9O+7Vxfkf+yrLBcpi2XKcpmyXNhcLFOWi4TV536OxcM18/sr5g/XzB+u3Nvu
b//sP8Db7/H3e7zdbrTb/OKP/TiTQrtpSfvdzi/8zF8iOwRkx4DpISQ7BEyPQf/b
4uv/klSnJDoh0Qlp2+0pqU744g/9TdpsRjvNaKcZeprRZln//huf/FOKKiavE/Iq
Jq8S8tplFaP/7c9CeMCEe0x4AJfdfv3Dv8x2E7JdRy5DtpvIZcgv/tovcHxTc3hd
c3zTcHxdc3xTc3zdcHxT80uf/+eYWY7OcnRWYLIcPcttZgVf51NO0Secolec4icZ
fcKP/cc/Qb77iOPmlnz3Efn2I/LtLcet3X/qw0+TN1PydkreTDi207P3j4a/yUbl
bNWRjZutyl0eufrdDYtyybJcDlkN77/4px+ojzl1nlMfj6M9p86P/OZv/EmOd48c
71bkdyuOo8nvVvzKP8l5tVd8fPB4dfD4eO/x6qBcevwRvoAXzPD8DM+fDXsww/Nn
/I+fa1DzDWq+tjkb7fMN098QJPMD8Xzv8kCy2NucH/hTP/KLHNo9B33goF2O3t/6
+Z/GTO/Rk3vM5AE9vcdM7tGTB8z0nuhf/T1u4oLrKHdZcB0X3EQ513HBT/whweSu
svO+InXZ/fadX/19eF6O7xX4Xm7HH/avv/lH6LsQ/T7AvA/Q70P0XbcH/IW//+vc
15NhqsnZ+3M/7jMTr5mL18x4w1y8Zs6b/revfO1blPIdJ/He5TtK+d7lO/76Z/8W
339QfP/Bc6P4/qPX//Zr0y2PTchjbWfV7S5/il8mmnhEE0U8UaPd5u5zX6aShkpC
JVxK7G8C/s3f/TKXQnApBRcuL4Xof/vSl7+Cv44I1hH+OsRfRfjrYf7dj3wTr6hR
RY1X1HhFNex5zZ/50c9zWG85rDfs11u3D+9vvF6RltekpxvSk8ty2Cf/4Zfw9gHq
4OPtfbyDf/b+0h/8HnIpUUtpc2Gz2//cwx/nqFY/YB6pdq8pDoLiIIfcD+/Pe3+F
6+WKm+Uj18tHbhajfbniL//VT5ktJPO5tLmQzOZD/uo/a6lmE8p5SjlLqeYp5Wzi
MuXhIUOWj4jTClmuEKcVonxEnlaIcsWXfkuTTy/Jp5ccXQ7vCzyuFCKzQGVqwO0i
g0s0RbTCeBI8ifEkRg27YoanGnyR44l8lAWeKPB2gkAu8WVM0E9k3yqGE7B7xLQS
0wpMK6GV9q0F8cefMD1leGaCp1OUy+5dtAltKdFa0WqF1tKlfausYOErPF/i+RLf
V3ijdxAq3sYRd3HMXRzzPo65G73TSnD58YnlQrFcKhZL1e/LpeLD+sRsBdkKZv2I
/k0GdVpAm0ObY9oCRlPHAcluQlK0JIUmKTSpy6TQxGhmRUB2CsiKkKnbuwySFUFU
4muPQCsC7dlpbb4/NETLixFcZ2dwrR+OiNT9i65tiloiKjuZOdImOSbMIeyywLj9
aASYDEwEJnQz7NfZEflBIT9oVD8K9UEjP2jkq5o3SqClQCuJUQKtBMa91SYkDFOM
STAmxeDSveP773JYX5NvrzlubXZz3F5TIDhFEUUbUjQhRRtxaoZ3mzYkO4Y/cOM/
bhKOt9dMT3uyasq0nJKV57lRBfPgSN0cqZucus5tunfYzHj31pDfwfEOjneG450h
dxnf3nKZl1zkHpe5x0WuXNo3hWS6mFuwjqDa7ZPHR+Yfl0+gunbvDcfKkCZz4rQl
SVviVLtsSVJN6Pno9oTWpyH18D7uK8rmEd2sMM0K3Ty6tO+bNiFqfeZNw8LlvG1Y
NA3z1icvKxrfp/HFi+NlgkpfYXSBMbmbAqPtXpcVcneP2AaIXYjeBYhdgNgG6F1I
PVmgvBRlRqOHPWXN1c5nLtbM2DAXa7fbPPlzdknNSTSUsuYkakrZuKy5Ej5UGirh
crwLZnLPOvrAug5Zy5C1Cs9202Y0rxqaiaGdaJqJcbvN7z9UzOsSIUBIENLYFDa9
NqCMD5RCUApBJQXVKEsvpdrWmI3CbBR6o9DbBr2x01w8crvSqELjFRqvaO2e27eJ
WvTuHr3boncbzG7rdvvO0gWpWZFqQaohNcKOhlQL9pVgQgT4own6vZpFLBcZcuHA
OnfpZlNteCxDjmo8QT/XacSbKqKoJEUlhqwlRS2YTSbIxkcpH6lsKs9Hej5KBby+
v2USeEx9ySSQTAPJxHcZSE7BksO1OgNrOU+pZinlPOVyv2N1WiNOG2S5QZzWiHKN
PG0Q5Ya2msDMwHQK0ynCZTf5usAT1wqmOLAaB1q4FJorxDPA4gCrmFGJGl81I7gW
Dq453l7gHQWBWhKoiEBZqHagpQBTGszu0UFVONBKaAXJq0/Q85DpY4anJ6iRtXp6
QtEmYGJ0qWj1GLIDXGXcsHgBrJ6vCCKFX0veOpjexRHvR3CdVIK4FPyOHwDYD+sT
eSG4cjA9hyyYzCAmhibJoS3O4GocXI2WJJu0B+oYsjGaCMPMwTUrAqanoM8wWRGE
jwRRNYBVew62HneHhgetiBYOsJmz12lGO51RPxxgXSIS4aAqEJWEWkAlmZoDSjcj
wA5gJSw4GoFCgJmBdnDVDq7awjU0NeqDRDnIDiNRr2rUZc1rJS1cpQWtcW+1jvDq
hqtZ6qCaYhj2+OG7iMOew+oJXDdXHHcWroUQFLEFa9Gcg1YnNToRxAcoe6gat8Px
5grvZkL2TpCVmZ0q6/eNPHEQNYvwMILrANqwmRHWGe/fmRFYB9DGt7eoq5DLvOXS
gfXyaMF6mSsoJCZXZLcOsEF2Btf08ZHJasXioxw1G4y1A+yxNigNaZoQJ2OwtsSJ
JlQ+oVdj2gKjTxZy+tS/j/uSw77i1KwwZ5B1cNUxCx0RNg6sLhdNw7xpyEtFYxSN
H74M15nAQ1CZawtWnZ+Btj5VCF2hdvcWrNsAsR0gW6dLGhmhvAnKjEbbnIg1Rm64
3vnMxJq5g2q3n/w5OvDYxQNQB9A2XEmfmfQwlcZUwqXbS00mcwJ5Yh1+eBmueYaR
hubTugdq+wSuh9ZwU1UDXMUAWb8NaFuoouMAViEopYXtyUs4eZpy05xB1WxqzFbR
XhxRi4qbtwNcvbyDbYsJW7TWmN29A+sGvdti3EzTOSpMSLQgMZAYQaKxYyxc96Xg
I8KX4ZpFaDkC7HwAq1pI1uUGUzU8VsEZVDvQXqchMxnyv+sXAFtJZumEzE9Rhw6o
PlIFPWhf399SVIKJf2DigDrxhyz8JbV/wf46fNFgLw9bppWxcHVgHYO2rVLaKkHM
xRlYhZt8lZNv27HBmh60V1i4XiLJXwCsEjMqampqPFX0xtoZrLcXeAcLWF8uRvYa
46sYTgZKoASze8S0Ajp71ZL441foeWgBu52hRtbqmQlFE4NJQCa0ZfUErtLBtUXF
DcsnYPV8RRBK/EoSVIpv93CNB7iWgsgXxP45YJdLxWIxwDU//SBzNZAazMRQpyO4
6sFcjZYYI0leT54BNkITY4iNZubg+sxcw0eC0BrsGKyduT5oxYNxgD2DqzVX1hVs
KkgHdevsNXNwVaahSYozg+3MVSFQvcGem+vNzMI11PXIYGVvr+pVgbyokZc1rx/E
YK5KoqVAbSxcVe3xKkjQJkWbBI3N6P418rBDHvZ8d/WyuRZC2kkjTk3o4Br1cG0T
QZtC/B1bxQ1jON5c492meDcp2XdOz+x1rQoOsmEvaxbBkbp2YHUTNDPCJiNsMt69
G4y1m/jmI9RVgLoOuTgyslbFRe5BLqGQUCim4RPABhmTh0fS1YrJesX8o92zavhY
gdQGqSBJEwdVa62xM9fIqwlV/aK9HnYVh72dcgRV7WB7oxMWOmShI4LGZ9FawNps
yKuKxihqo2j8gMbnbLwZeAILWH01mKsDbX2qEMYCVm7vnbF29hpymixoROQA+9xg
J2KNadZoueZqFzB39mrhuuEUzGkbRdt4bCdP4VpzLT1m0mMmfUz5HLCZ2hHIkkA9
AewTuBppaD+tnxlsB9djA2Fd9cbaw7WxcNUtVPHRGqwDqzXXhNLTlF5LOYJqZ7LN
xQq1qFCLituvTfDyFq8Yw1WjjcZo3RuscYDVDq4yTFFhSmp4ZrD7UnCoBPtKwguA
LWcRWkS0HWCfmquDqymbFwzWwVWEZCKkqGKK2llrB9dJysyfMPMnyCKwcHWQtXD9
iKIU5BVMg/9n7bWzWF9SBBauVbDkcD2ldMbagfZyvyUrDVkFslgjyo2D69rCtZ7Q
VgltlcCFfGavx3XOcddawA4Ga+31Cs0lkivsXkRrGAFWkTm01lQOsF4H1pG5dmMN
dqiHKRxYS6A0mN1Db65mZK6tA+zkbdaDVemUU2vBagEbo8st2tXD2pmrils31mA7
sPq+xA8lfqUIKoVfSf5rFHEXxbyPYu6iiElpwRpXdp4C9sO6pDhBcRIUBWT1S+YK
pAYmhjoZ18I5dRRgjP2PBEa6itjB9dQSG2Pt1eVQEVtz7eAahqszwHYVcWeu3UTL
Je101t9eq/ujBeumhE2JSFwl7CriqT6iTDMCbI4Ji8FcESgDEoE0AmEyhIkQJkSY
kBtnrt08M9hXFqzqskZd1LxZC7SUGCnRqoNri6obvKYlnJ4bbDyCqzjs+O3VZ8i3
Vz1gCxxYxchgHViLJqRNatpUoBPQiSAZ2Wsl4XB7jXeT4t1M8G5TstP2zF43smAv
GgfYhnlwGOBaHwmbOWFt4Ro0Ge/fnlfD8e0t3nWIdxXgXYW9sXb22sHVuMzC+che
Z6SPD0zWFq7pesXih7rb6wBXpQzKwxlsPNTDSdubazdncG1PPVgPu4qjM1g9stjb
NmGhozPAWnP1nbmO4PqCwXbm2k1lXEXsauGqtGDtJtp9ozdYvQuoJksaGdK6P+Ce
N7H/+XYzYY1pNmhpIXu9C5jj4Opq4bZRaF9Zg716UgtLn8zBNRMe7M4r4pnMCeWp
n3X44cxejR7gaiQ0nzZnBvv9h4pjC4fGcGwNUVUiJUhpkMKaq27pAVtGh7NquFSp
g6ud6b9/i3fzDv/mPd7vf8/D7BMeZp+6/IR//be/xiHccgx2HIItR644nq45bq84
ik95pf7bWUU8TReoMEWFCTJMLVwNfTW8rxxcS8m+EiPABr25ttLaaytilnP9orma
ssFUDQ/leT1808FVRsxkSFFFg726WnjmW3vNgglqPdTD0nNwrSCvBEUpWARvBnMN
JEVgwVq73F8vz26u1lxhWkHmDNbWwuu+Fu7g2lYJzNSZveZra675tuW46w3W9DfX
K6SDrOAKwXej1TO4Vm5qanw1ur92cD2MANsZrIoxJ5y5DgY7vsHGDq56HqJndqbe
UBEXzQDWzmB1ue/tVWYFKm6cvbauIj6/uVq4WoP1K8Xb0e11UkniShBVHWAln/n4
xGIxwDUv6O01PwlmlejhSmahaiYGUmACTTLcYOs4wBjVw9VoSTq6wcYYohFch4r4
BXN148dVf3d9f2jP4PqgFcnidz2BawnrEjYVZl1BPAA204czuCrdUC9G5uqgqgDV
VcR6dnZzHeDaEJpmZLAK9SpHXVi4yssGeVHz+hvD7VWtI7zGwbX28OqW4NLZq0mJ
7r+LPOwdYC1kD4fPu2r4eoCqEIPFjm6wOm16sPYGO7LXg6uFO3v1blKm5d3ZzXUv
Gw6ydtmwCI9nN9fAmWvYZIR1xlffDdVwVwsPE/BpHp7dXM8ml0yjef+B0+TxkdTB
tQPs/KOHvhruzVVjRxnSZKiIQ8/BVXXTnAH2uK84OrAeHWhPo7vrbWeubcSiDVnq
CK/1z26uPVh7wAYjcz2H61lFbArqUwkdXJ3Bpruv9vfXerLowdqI3Bns5dnNVcu1
g+sGI9dcvw9GN9cFra/QgUI3HrpR7JKmv71eSZ+Z8C1cO4OtNKa0BpvJHYE6EcgT
gSptRTy6wZo268HazWCwhruHimNrODTYbM2ZwXpncBW0jaCKjwNcvYRStWeAffd7
lvirj/G/GaEeS9Si4nJRcbOsUItvs371w6iiZlrUTFSFCWt0VGPCIyb8P+y7ini/
cXBNentVUXJmsPtKWnsth4rYAjbob66tcHCVsauIxYvmaqoGU7c8lkM9fDOxUM3k
2GCHiniWTsiClMzZ68xPOamhHn5zf+vMVVBUgryET31vuLk6a61Hub++Obu5Zg6s
dkCczm+uY7jqKkHMvN5ex3Dtxhms4VIYruggK7hCcgn8LwdYxewMrDU1laiew/XJ
BHJJIGNMMYDVdPVwf4O15tqO4dpVxJ79yClvElAOrMqBVsW0pbVX6cxVxs1ZLnz/
7OYa1BK/Vvi1Iqglb93tdVIN1tqPu8EuFooPm5LcmWt+cpAtYLa191eTGZhg7XVi
BoNN87Ob61PAJruU9KSJjYVrZ7BDRfwcruEIsJ3B3u2fw/VBKz63vEBPR+baVcNr
Z7CxvbtOX4CrMg1VYuvhzlwVAjky2K4i7uAauWq4N9ivu4+aXhXIS2uv8mJksO72
Ophra+vhpsWrW8Ii7T9oGuBqUxx2HMyVM9cxXEcWG4fntbADq06EM1hrr4fb6xFY
HWRv09HNteAgmh6se1lzkA2fDQ7UtauF6wGugdvfv8tdLXxra+EOrtcWsJffTM9u
rh1Y6Q02deb6eAbWyXpFulqx+Oi+h6tSzl4VKM/0BhunLaHyCFVjq2GvJvQae4PV
D5i2cEAtncGWriYubUVcn9fCfbYhXm+u6jlcRwbrZR1UOQesvrK1sDNX9LnBdhVx
PVm6Wjh3GdKIiP/83/8wujxwnL3lkG05Zu84zN6691u+8ut/h+IzOTraotlh1M6m
3KL9Hbu4u7l6I7AOe18LS1cLy9PZdBWxhSujMe4G24zgOphrXxFX5dnNVTfQtqIH
bekq4u7melLapptq02C2dX9zVcvqLG9W7oOmsLWVsLbVcLdvd/fo/ZYsmSPDZLDX
yO7dDbaHq6uGO5PFfeTU3VxbGaFF3FvsYuG/YK4tpm4xZcOqsvZ6k1qgZmKA60yE
5O4GO5ucg3UW2L125vrm/rYHa1EOBjtZeu7mekHtL6me5OH6o7Ob69RVw1kF09JY
uI5urm2V0NYWrm2VwDywcF3lHLctx6eA5UpyhbHWKkR/e+3usEW0cnCtRmCt+7fP
E7genlfEZzfXJwZrdg/PzdXt7Txk6s0o2nhUC9uPm7q3LtUIru0LBhud3Vx9Vw0H
zmC/133Q1NlrVxH70t5gf+fJ1sIFFA6qRWHr4eIk+q+FO6CaiU3h3k1yfnNFq74i
NkaS7Ce9sfaQxRAZmzMH1/CJudqxHzm9P7Q8mOdwfdCKP7C4eGKug8GyrhCxJHtS
C4+zTLpaeGyuI4M12ZNauHFjQVt+kMhXtTPXpgerdBb7elwLN21/e+3eYXF+cx3b
qzzsOMTXw721mzFs44jWfdCkR2BtE2hTQSzhcHNeC3f26t1MyE7nN9euGrawrZmH
R/tBUzPUwuOK+N3b47m5Xp9D9uK3pmc312F3BhuK5+a6WjHpb7AfrLl6T+x1dIO1
N9fmmb3aivh7Z7XwYT8Y7HFnb7A3OmHZRmeAXbpUjU9ePTfXcUXcm6sY2Wt3gzXX
1GXZA/Wpwardvb25yugMrK2rib/wR/8v+3bDvllzaNbs2xP7RrL/MOHw7oafnf8K
p0JRNIpT6XEqFKfAo/AVJ/+Sr8TN6OZqJxN+D1kqzUy5WlidRlkSqhOvww+YdvYM
rOMb7EvmemzoDdZvA9oGB1VxVhFX0WF0c9WUSp8ZbPm9mqaD6xiwixK1rLhd6eGD
Jq0x5hyw397fM03mDqxpD9bxDXZfSgdWwcFVw9Zk7Q12fHPV0sG1v8GaF8x12B/L
Aa4zcV4PZ9LeYPuba5C6enioiFfK5839Rw6oOHN1BlvB9NazN9ezaviCOlhSBRfs
s4+53G/PwJpVhmlnsMX5zbUz124Xs9Ca626A6hi0/x/eT/0tT4R5jgAAAABJRU5E
rkJggg==
</Image>
<Image Name="Reference" Width="472" Height="8" Format="RGBA8888" CompressionMode="PNG" Description="Reference">
iVBORw0KGgoAAAANSUhEUgAAAdgAAAAICAYAAABakO4CAAAXtUlEQVRogXWay6tt
XXqXnzHGvM+15rrs6/lOfQZFYqWQdLRCEGwFSUOMEBCMCgpCCm8NbSioSSNGEYRq
2IhFQCqK2FISRCSIDQv7hhBTpYSyrHPqfGfX2Xuv+5pzzdsYNsaYt31ONV5+71h/
wHp4fu8U6ss/Z8QcRAYyA5EZxu+//+1fIvIksZtIuXTvn48DYv2eRL//RD7w337+
Z7n1Ym68mNtuVMyNF3HrxXz+L77LsZWcWsmpFaNdctKC31f/Es+keHqGZ1KUy+4d
/bF7Yh2R6IhYxy4jEh0T64h/+1f/O94+wttFePsQfx9N3l/7X3+bh9drHl5f8fD6
ivevrybv/M98i/UqZbVOWa9T1iubK7dvvvKPWD3dsny8Yfl0y/Lpxr3t/u4v/3O8
4xH/eMQ7HEa7za/99M8wK7SblrTfNbOL5p/8rb9BdgrIzgHzU0B2Cpmfg/631bf/
HalOSHRKohPS1maiU1Kd8LUf/2XabEE7z2jnGXqe0WZZ//6HX/p18iqmqBPyKiav
EvLaZRWj/+PfhfCECY+Y8AQuu/32j/8a+13Ifhu5DNnvoj5/9Td/hfPbmtObmvPb
hvObmvPb2mXD17/6G5hFjs5ydFZgshy9yG1mBd/mcy7Rl7hEr7nELzL6Ej/9X/8c
+f4V5/0r8sM9+f4V+f6e8+4V+f4Vf+nxF8mbOXk7J29mnNv55P1T4e+wUzl7dWbn
Zq9yl2du/mjDqlyzLtfTrGz+9b/4RH3OqfOc+nwe7Tl1fuZ3fvvPc3545vywIX/Y
cB5N/rDhX/+rnNdHxWcnj9cnj8+OHq9PyqXHn+Zn8YIFnp/h+YthDxZ4/oL/+Y8b
1HKHWm5tLkb7csf8twXJ8ki8PJEsTzZXw/sv/OSvcmqPnPSJk3Y5en/3l34RM39E
zx4xsyf0/BEze0TPnjDzR6J//0+5iwtuo9xlwW1ccBfl3MYFP/enBLOHys77itRl
99v3fuMn8Pwc3yvwvdyO3+0F3377dfRDiH4fYN4H6PcB+iHs97/2z/4zj/VsmGo2
eX/lZ3wW4g1L8YYFb1mKNyx52//2W7/3XUr5BRfx3uUXlPJ9n//gy7/MD58UP3zy
7DyP9ifFb873PDchz7WdTbe7/AV+jXjmEc1Un/0+Vxx+4ptU0lBJqATDLg2VgP/w
K9/kWgiupeDK5bUQ/W/f+OZv4W8jgm2Evw3xNxH+dpj/9JN/gFfUqKLGKyq8oh7e
ec0v/NRXOW33nLY7jtu924f3d95sSMtb0ssd6cVlOeyz//J1vGOAOvl4Rx/v5E/e
3/iTP0CtJdKNWk33v/L0ZzmrzY+YZ6rDG4qToDjJIY/D+6v+3+F2teFu/czt+pm7
9Ya71bD/zb/3OYuVZLmUNleSxdLlSvJvfr2lWswolynlIqVappSLmcuUp6cMWT4j
LhtkuUFcNojyGXnZIMoN3/hdTT6/Jp9fc3Y5fnvcKERmgcrcgNtFBtdoimiD8SR4
EuNJjBp2jwWeavBFjifyURZ4osA7CAK1xpcxQT8RvooJVAwXMIdnaCWmFZhWul1i
tCD+7EvMLxmemeHpFOWyexdtQltKtFa0WqG1dGnfKitY+QrPl/i+xPOVG/v2Q8W7
OOIhjnmIY97HMQ+jd1oJrj+7sF4p1mvFaq36fb1WfNheWGwg28BiNN2bDOq0AJ1D
m2PaAtyYtqCOA5LDjKRoSQpNUmhSl8lFExvNogjILgFZETAvQrJLwNz9FiQbgqjE
1x7By2k93p8aovXVCK6LCVzrpzMilYhKQi3BpajsZOZMm+SYMIfQpgmLfj8bASYD
E4EJ3UR93mYn5AeF/KBR/SjUB438oJGvC94qgZYCrSRGCbQSGPf2diFhmGJMgjEp
hmnGj9/ntLnlfLgl39+Q72/J97ec97fku1sKIbhEEUUbUjQhRRtxaYZ3mzbEh/Gf
GsOfm4Tz/S3z8khWzpmX849ypwqWwZm6OVM3OXWd22zO1HVO2Cz44p0hf4DzA5wf
DOcHQ+4yvr/nOi+5yj2uc4+rs7Lp3hSS+WppwTqCarfPnp9Zfla+gOrWvXecK0Oa
LInTliTVxKkmSVvixL5Dz0e3F7S+DKmH9/lYUTbP6GaDaTbo5tmlfd/phKj1WTYN
K5fLtmHVNCxbn7ysaHyfxhefHC8TVOYGowuMyd0UGG2zLkvk4RGxDxCHEH0IEIcA
sbd7PVuhvBRlRqOHPWXLzcFnKbYs2LEUW7fbvPhLDknNRTSUsuYiakrZ9HkjPai0
I5+2Uw77QuZsow9s65CtDNmqcLKbNqN93dDMDO1M08wMzUzTzgzNzPDDp4plXSIE
CGkQEjvC7l4bUMYnSiEohaCSgmqUpZdS7WvMTmF2Cr1T6H1jZ9fQXD1zv9GoQuON
RuUar2gxUYs+PKIPe/Rhhzns3W7fWboiNRtSLUg1pEbY0ZBqwbESzIgAfzRBv1dZ
xHqVIVcOrEuXbt9VO57LkLPqJpjMbRrxtoooKklRiSFrSVELstkM2fgoz0cqH6UC
lBr2N4/3zAKPuS+ZBZJ5IJn5Q178NadbNQFruUypFinlMuX6eGBz2SIuO2S5Q1y2
iHKLvOwQ5Y62msHCwHwO8znCZTf5NscTtwrmOLAaB1q4EZobxEeAxQFWsaASNb5q
RnAtHFxzvKPAOwsCuSZQEYGDagdaCqA0mMOzBaoDrGklaEny2Wv0MmT+nOHpGWpk
rZ6eUbQJmBhdKlo9huwAVxk3rHyJPwKr595+pPBryTsH04c44v0IrrNKEJeCP/Qj
APtheyEvBDcvoLrYCBYbMJmBmaFJcgvU5mO4Gi1JdmkP1x6yDq4RhoWDa1aEzDvQ
XgLCZEMQbgiiagLWDrYPp4YnrYhWDrCZs9d5RjtfUD+dYFsiEoGoJaISFqy1gEoy
NyeUbkaALRxg7X42AoUAswDt4KqjPm+zE6GpUR8k6oPsQWtHol7XqOuaN0pauEoL
WuPeahvh1Q03i9RC1aQYhowe3yBPB05bB9TRnPe3FAgKIShiC9aimYJWJzU6ESSn
MVQNpYPs+e4G7y4l+0KQldkwlc2dLDjJhlV4GsHVgbaxcA2bjPdfmBFYB9DG9/eo
m5DrvOU6t2AdRkGhMLkku3eADZzBuj19fma22bB6laMWg7F2gD3XBqUhTRPixIE1
bV1qQuUTqhrTFhh9sZDTl/59PpacjhWXZoOZQLaDa8yqjQgbB1aXq6Zh2TTkpaI2
isYPPw3XhcBDUJlbC1adj0BbUF9KhK5Qh0cL1n2I2Ac9ZOt0TSNDlDdDmdFomzOx
xcgdtwefhdiydFDt9ou/pA08DnEH1Clob6XHQvqYSmMq4dLtpSaTBwJ5YRt++DRc
8wwjDc3ndQ/U1k0H11MLd1XlwGomoPXbgLaFKjoPYBWCUlrYXryEi6cpd80EqmZn
gdtenVGrirt3FqZe0eLlHWxbTKgxWmMOjw6sO/Rhj3EzT5eoMCHRgsRAYgSJxo6x
cD2WgleEPxKuWo4Au3RgdbDdljtM1fBcjaE6wPY2DVnIkP9TfwKwlWSRpiz8GeoU
OKBasEplgfvm8Z6iEsz8E7PAAnbmQDsLJEWwpg6uON6GnzTY69OeeWUsXB1Yx6Bt
q5S2ShBLMQGrcJNvc/J9OzZY04P2Bs01gmsk+ScAq8SCipqaGk8VvbF2BusdBd7J
AtaXq5G9xvgqhouBEkyJA6wYmaskdnDVy5D5foEaWatnZhRNDCYBmdCW1Qu4SgfX
FhU3rEdg7Qw2CCV+JQkqxf/t4RoPcC0FkS+I/Slg12vFauXgehHkl7G5ipG5Gkgt
YOu0mJgrI7gaI0nezKaAvWgio4kxzmBDC9jOXAtnruGGIHwmiMqP7PW9g+uTcYCd
wNWaK9sKdhWkg7qJujNXC1dlGppkCtbOXCUC1Rvs1FzvFhauoa5fGKy1V/W6QF7V
yOuaN09iMFcl0VLg7SJU3aBqj9dBgjYp2iRobHZwlacD339+aa83FEIOk0ZcmtDB
Nerh2iaCNhXE37NV3DCG890t3n1qAfu98iN73SoL16OoWQVn6noAa93kBM2CsM4I
m4wvvhiMtZv47hXqJkDdhlydGVmr4ir3IJdQSCgU83A5tdcgY/Zk4ZpuNyxfHT6q
hs8VSG2QCpI0mVhr7Mw18mpCr/6kvZ4OFaejnXIEVe1ge6cTVjpkpS1gV60FrM2G
vKosXI2i8QMan8l4C/AEFrD6ZjBXYyFbX0qEqRC6Qu4fEYcOrBayl9mKRkQ0Mvqk
wc7EFtNs0XLLzSF4Adcdl2BJ2yh047GfvYRrw630yaTHQnqY8mPAZupAIEsC9QKw
L+BqpKH9/KXBdnA1nBsIe4N9AdcGdAtVfJ6A1ZprQulpSq+l3DWYDqx7a7LN1Qa1
qlCrivvfS0dgHeCqjQVsZ7DGAVY7uMowRYUpqeEjgz2VDrCVhB6wA1xLB9e2A+zY
XFeSnYOrqZoXBjuCqwjJREhRxRS1s9YOrjML14U/QxYOrp5NpXzePL6iKAV5BfPg
/1l7HVls4a+p/Ssqf83xdt4bawfa6+OeeWnIKpDFFlHuHFy3Fq71jLZKaKsEruRH
9nre5pz3LfmhHRustVcLV8kNdi+i7VAPexJF5tBaUznAeh1YR+baTaDWI3ONnLla
uFIaODx9ZK6tg6tehszeZR/VwsjEATZGl3u0q4e1M1cVt26swY6rYQtXRVAp/Ery
P6KIhyjmfRTzEEXMSgvWuLLzErAftiXFBYpCUBSQ1dN62JoriBQL2GRsrrmFq5ED
YA8jwF5aYmOI0UQuJxXxJSBILVzD8NlCNi4JWg9fq4m5dhOt17TzRX97rR7PsKsw
uxJ2JSJxlbCriOf6jDLNCLC2Fu5q4jMCZUAhkEYgTIYwEcKECBNx58zVTuMMdmSv
ry1Y1XWNuqp5uxVoKTFSolUH1xavblBNSzifGmzs4CpOR+TpwO9vfmxirxasYph4
AGvRhLRJTZsKdII12JG9VhJO97d4dxau3v2M7LL/yFyPsrGAlQ3L4DSC65mwWfZw
DZqM9++m1XB8f493G+LdBHg3YW+s16NamEJiHGSzcDmx1/T5idl2w2xrAbv68e72
OsBVKYPycAYb99aaJG1vrmEH2HZaC3dgPR8rzgdrsHpksfdtwkpHPWCD3lz9Hq6N
USPAhp801276iljbirgqLVi7iQ7fQe+D3l6rmTXXVtg/cM+b2f8GNzO2mGaHlhay
t4eAJTsLV1cL60ahfQ8dKA4341q45kZ6ZNJnIXwy6cNxWhEvZE4oL/1sww8TezV6
gKuROIO1cG3nhh8+VpxbODWGc2uIqgopQUqDFBauuoW2Bd2KviLuquFSpQ6udipn
rHqnXC3s4LouLWCfY1sLj+Gqnb06gx1XxNZcU1SYIKPUwtXQV8PHUnCqBMdScqyE
A+zUXFvpACsi1ks9NdfLAFdTtTy9qIjverhGLGRIUUWDvdaCxWzm4JqSBTPU1h8M
1nNwrSCvBEUpWAVvB3P1JYV/ReXstQrWnG7Xk5urNVfIKsicwdpaeNvXwh1cdZUg
Fmpir5255vuW82Cwpr+53iB7g71B8P1oM7q5Zj1YK7f5anR/7eB6GgG2M1gVYy4W
rpTG5egG626uHVj1ws7cGyriohnA2hmsLo+9vcqsQMWNs9fWVcSDwQahcnC1ButX
inej2+usksSVIKo6wEp+7LMLq9UA17yAvLD2ml8Ei2qAK64WZmYwqQVtkxTQ2hus
havq4YqWpKMbbIwhQg+QHVfElxfmGtrd7yri1uP9qZ3A9UkrktUfeQHXEraltddt
BfEA2EyfJnBVuqFaDffXs4OqAtS4Ih7dXMdwDc3YYBXqdd6DVV43yKuaN98Zbq/e
NkI1Dq61h1e3BNfOXk1K9Ph9pAOrnSOn41dHcB2BFWFh626wlyZEp00PVmuwEI/s
9XR3g3c36+3Vu0uZlw+Tm+tRNpxE3UN2FQ432LBZEDi4hk1GWGd864uhGu5q4WEC
Ps9Da69nD1PIkb3afR4t+w+cZs/PpA6uHWCXr576arg3V40dZUiTpL+9hp7fgzVU
NaFqJoA9Oaiej4PBXkZ31/vOXNuIVRuy1hFe609vrmO4vjDYl3CdVMQmp75U0MHV
GWx6+JYz2JB6turB2ojcGez15Oaq5dbBdYeRW27fB6Ob6wrtK9rA2qtuFIdkDFef
hbDmOjHY0hpsJg8E6kIgLwSqtBXx6AZr2qwHazft53UP14cXcD21hrCuJjfXMVxf
VsSll1CqdgLY8sXNtTNXtbZ5t/msv732cDUDYI+jinierlBhau01spAdG+yxslDt
DPZUTgFbLSxUrb3GriL+tLmaqnUGO1TEdzNbC2fSpegAa+01S2dkQUrmz8gcZC99
PRzw9vHemaugqAR5CZ/73nBzDay1dvZa+1ccb+8mN9estGC1A+IyvbmO4drWCSy8
3l7HcO3GGazhBsON6CAruEFyDfxvB1jFYgRWZ7Ci/hiuLyaQawIZY4oBrKYcQNvd
YJPXthZuO7h2FbFnP3LKmwSUA6tyoFUxbWntVTpzlXHjsjNYf3JzDWqJXyv8WhHU
knfu9jqrBmvtx91gVyvFh13ZQzW/OMgWsNjbathkBjGjB+xQEecvamEFDrBGS5JD
SvoCrpGD6/gjp5dwDcPuBls6c/0Yrk9a8ZX1FXo+mGtfDW+dwcYSasH8E3BVpqFK
PmWuIB1s0bYivs3OPVwj3fS7+rb7qOl1gby29iqvRgbrbq+DubaousFrWlTdEhZp
/0HTANcjwkH2pF/C1VXDyMkNtk0a2oQerDoRzmCtvZ7ubydg9e4taLvba3dzHdvr
SdZ8OThR19NaOGyyHrTvv8hdLXxva+EOrrcWsNd/kLqbq4Q+B8hmYerM9XkC1tl2
Q7rZsHr12MNVKWevCpRneoONk5ZQeYReQ+jVfT0ceg1GP2F04cBaOrCWriYuXUU8
rYX7bEO8zlzLF2A10xusl3VQZQpYbQ22Lu3NFT01WLm3HznVs7WrhXOXIY2I+hts
KrZoucM0W4y091fdDBVxd3O11bA12DZQHOKhFl509uomG91gM3m0YH0xXUVs4cpo
jLvBNrQzw8PTx3A9NxBW5eTmqltoG9GDtorPk5vrRWmbbipXD3c31w6sXd5vOnNt
bSU8tlet2TuDzdIlMkwm9qrCtL/BHis52Otox33kVI1qYS3i3mJXKx+1/Nhcu31T
WXu9S621ZmKohxciJHc3WGuuaW+vi8CabO3M9e3jfQ/WoqTfZyvPmmtwRR2sqV7k
6fZVf3PNKsPcgTWrYF4aC9fRzbWtHVy7ingZWLhubC18fglYbiQ3GK47axXCVcTD
R04WrtUErN3b5wVcTx9XxN3NdVINj26w8evh5tpN2wN2QdHGo1rYftzUvXWpRnBt
P2Gw0eTm6rtqOHAG+4Pug6axvZaC2Jf2BvuHL7YWLoZauCiErYkvYnJzNTNrrR1g
hauIxzdXtJpWxMdZXwd3cO3ur7Ez2CAZVcKTeSaIqsFczceA/ROrqxfmOjVYEUuy
F7XwOMukcHAdm+vUYF/Wwv2ua8oPEvm6A2ozMlhrsW+UQO0ivLp1UG3was/CtmkJ
i4T48Y0D6tRe5enAKb55AVbxoiKOaN0HTXoE1jbB3mAlnO66Wnhqr97djOwyvrla
qE4r4nP/QVMwMtfu/cW789Rcb6eQvfrd+QtrnUJ2HoqPzXWzYbax+/LVB2uu3gt7
Hd1gI8+3cFX1aBpXEf+gt9Xu9noeVcRls+GuTVi30QSwa5eq8ac31zFcHWA/Za79
Ddbc9nCdANYZrDo82purjHqwdhbbihzlpRauzRYjBrBq6Qx2H3IJXC3ceGhfoUeg
3cf2g6bMAXUhPTJnsQv3FfFCuVpYXUZZEqoLb8IPmHbxEViHG2z9I+HaGez45tq2
YmSxUEan0c1VUyp3e+3eP6hpOrhOAOsq4s3wQdNLe9Va893j46gWTpFR4iw26W+w
w81VcHLVcLdDSLmI0KKrhh1cRXeDNeyqMVyn81x2cLVA7eHqTLao4uHmGgyQzVxF
vFE+bx9fuUoYZ67OYCuY33kWrv6ayv84j1ef2ZtrZSbVcAdaUUxvrmO4tlWCWITW
XA/tpBruQPv/AYQMDOaivYJkAAAAAElFTkSuQmCC
</Image>
<Image Name="ErrorMask" Width="472" Height="8" Format="RGB888" CompressionMode="PNG" Description="Error mask">
iVBORw0KGgoAAAANSUhEUgAAAdgAAAAICAIAAADV8nlVAAAAS0lEQVRoge3ZsQ3A
MAwDMLno/y8nN3RSkZCzB02CAE9WACh62gEAbqeIAcoUMUDZ2w4AnGPNt/vxo0qS
jGcdQJdFDD9iUd7JIgYo2ytUBw/MoslhAAAAAElFTkSuQmCC
</Image>
</ImageSet>
<Text>glDeleteBuffers(1, { 1 });</Text>
<Number Name="TestDuration" Description="Test case duration in microseconds" Tag="Time" Unit="us">43195</Number>
<Result StatusCode="Fail">Fail</Result>
</TestCaseResult>

#endTestCaseResult

#beginTestsCasesTime
<?xml version="1.0" encoding="UTF-8"?>
<TestsCasesTime>
<Number Name="dEQP-GLES2" Description="Total tests case duration in microseconds" Tag="Time" Unit="us">121745</Number>
<Number Name="dEQP-GLES2.functional" Description="The test group case duration in microseconds" Tag="Time" Unit="us">44471</Number>
<Number Name="dEQP-GLES2.functional.buffer" Description="The test group case duration in microseconds" Tag="Time" Unit="us">43800</Number>
<Number Name="dEQP-GLES2.functional.buffer.write" Description="The test group case duration in microseconds" Tag="Time" Unit="us">43749</Number>
<Number Name="dEQP-GLES2.functional.buffer.write.recreate_store" Description="The test group case duration in microseconds" Tag="Time" Unit="us">43483</Number>
</TestsCasesTime>

#endTestsCasesTime

#endSession

================================================================================