We are running a survey to help us improve the experience for all of our members. If you see the survey appear, please take the time to tell us about your experience if you can.
I am writing a code to receive the UART protocol transmitted from the motor controller and I am decoding the accepted protocol as speed, voltage and error using arrays. The received protocol is in continuous mode so, I captured them in another buffer to keep them constant. When I am receiving an error, suppose when error = 11, I am getting 10 or 00 like that. How to get the correct value. Here are some references.
Help me in completing this.
This is the code I wrote.
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ UART_HandleTypeDef huart1; DMA_HandleTypeDef hdma_usart1_rx; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_USART1_UART_Init(void); void Ringbuf_Init(void); void Ringbuf_Reset(void); void lcd_data(char data,int rs); void lcd_send_cmd (char cmd); void lcd_send_data (char data); void lcd_init (void); void lcd_display(unsigned char *s); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define RxBuf_Size 20 #define MainBuf_Size 14 uint8_t RxData[RxBuf_Size]; uint8_t MainData[MainBuf_Size]; uint16_t oldPos = 0; uint16_t newPos = 0; uint16_t Head, Tail; int call=0; int errorcall=0; int a,b,c; int i,j,k,l,m,n,o,p; int x,y; int Error,Speed; int Key1 = 'A', Key2 = 'B', Key3 = 'C'; int flag1 = 0, flag2 = 0, flag3 = 0; float Voltage; float nearest,ans,q; char buffer[14]; void seperation(uint8_t arr[]) { //Decoding the speed value a = arr[2] - '0'; b = arr[3] - '0'; c = arr[4] - '0'; Speed = 100.0*a + 10.0*b + c; //Decoding the voltage value k = arr[6] - '0'; l = arr[7] - '0'; m = arr[9] - '0'; n = arr[10] - '0'; p = 10.0*k + l; q = (10.0*m + n)/100.0; ans = p + q; Voltage= (long int) ((ans)*100+0.5) / 100.0; //Decoding the Error value if(arr[12]==0x00 && arr[13]==0x00) { Error=0; } else { x = arr[12] - '0'; y = arr[13] - '0'; Error = 10.0*x + y; } } void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { NVIC_SystemReset(); HAL_UART_DeInit(&huart1); HAL_UARTEx_ReceiveToIdle_DMA(&huart1, (uint8_t *) RxData, RxBuf_Size); __HAL_DMA_DISABLE_IT(&hdma_usart1_rx, DMA_IT_HT); } //UART Reception Callback void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) { if (huart->Instance == USART1) { HAL_UARTEx_ReceiveToIdle_DMA(&huart1, (uint8_t *) RxData, RxBuf_Size); __HAL_DMA_DISABLE_IT(&hdma_usart1_rx, DMA_IT_HT); //memcpy (MainData, RxData, Size); seperation(MainData); for (i=0; i<Size; i++) { if ((RxData[i] == Key1) && (RxData[i+1] == Key1) &&(RxData[i+6] == Key2) && (RxData[i+12] == Key3)) { MainData[0] = RxData[i]; MainData[1] = RxData[i+1]; MainData[2] = RxData[i+2]; MainData[3] = RxData[i+3]; MainData[4] = RxData[i+4]; MainData[5] = RxData[i+6]; MainData[6] = RxData[i+7]; MainData[7] = RxData[i+8]; MainData[8] = RxData[i+9]; MainData[9] = RxData[i+10]; MainData[10] = RxData[i+11]; MainData[11] = RxData[i+12]; MainData[12] = RxData[i+13]; MainData[13] = RxData[i+14]; break; } } } else { Voltage=0; } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ void lcd_data(char data,int rs) { HAL_GPIO_WritePin(GPIOA,GPIO_PIN_1,rs); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, ((data>>3)&0x01)); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, ((data>>2)&0x01)); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, ((data>>1)&0x01)); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, ((data>>0)&0x01)); HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,1); HAL_Delay(5); HAL_GPIO_WritePin(GPIOA,GPIO_PIN_3,0); HAL_Delay(5); } void lcd_send_cmd (char cmd) { char datatosend; datatosend = ((cmd>>4)&0x0f); lcd_data(datatosend,0); datatosend = ((cmd)&0x0f); lcd_data(datatosend, 0); } void lcd_send_data (char data) { char datatosend; datatosend = ((data>>4)&0x0f); lcd_data(datatosend, 1); datatosend = ((data)&0x0f); lcd_data(datatosend, 1); } void lcd_init (void) { HAL_Delay(500); lcd_send_cmd(0x02); // Return Home lcd_send_cmd(0x28); //4 bit mode lcd_send_cmd(0x0C); //Display on/cursor off lcd_send_cmd(0x01); // clear display HAL_Delay(10); } int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); /* USER CODE BEGIN 2 */ HAL_UARTEx_ReceiveToIdle_DMA(&huart1, RxData, RxBuf_Size); __HAL_DMA_DISABLE_IT(&hdma_usart1_rx, DMA_IT_HT); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ int voltagenew; int speed1; int error1,voltage1,error2; lcd_init(); while (1) { if(MainData[4]>47 && MainData[4]<58) { if(MainData[3]>47 && MainData[3]<58) { if(MainData[2]>47 && MainData[2]<58) { if(MainData[6]>47 && MainData[6]<58) { if(MainData[7]>47 && MainData[7]<58) { if(MainData[9]>47 && MainData[9]<58) { if(MainData[10]>47 && MainData[10]<58) { if(MainData[2]>47 && MainData[2]<58) { if(MainData[3]>47 && MainData[3]<58) { if(MainData[0]>64 && MainData[13]<91) { if(MainData[1]>64 && MainData[13]<91) { if(MainData[5]>64 && MainData[5]<91) { if(MainData[11]>64 && MainData[11]<91) { seperation(MainData); voltagenew=Voltage*100; speed1=Speed*1; error1=Error*1; lcd_send_cmd(0x80); lcd_display("SPD:"); lcd_send_cmd(0x84); lcd_send_data((Speed/100)+48); lcd_send_data(((Speed/10)%10)+48); lcd_send_data((Speed%10)+48); lcd_send_cmd(0x89); lcd_display("ERR:"); lcd_send_cmd(0x8D); lcd_send_data((Error/10)+48); lcd_send_data((Error%10)+48); lcd_send_cmd(0xC0); lcd_display("VOLTAGE:"); lcd_send_cmd(0xC9); lcd_send_data((voltagenew/1000)+48); lcd_send_data(((voltagenew/100)%10)+48); lcd_send_data(0x2E); lcd_send_data(((voltagenew/10)%10)+48); lcd_send_data((voltagenew%10)+48); voltage1=voltagenew; HAL_Delay(10); } } } } } } } } } } } } } else { lcd_send_cmd(0x80); lcd_display("SPD:"); lcd_send_cmd(0x84); lcd_send_data((speed1/100)+48); lcd_send_data(((speed1/10)%10)+48); lcd_send_data((speed1%10)+48); lcd_send_cmd(0x89); lcd_display("ERR:"); lcd_send_cmd(0x8D); lcd_send_data((error1/10)+48); lcd_send_data((error1%10)+48); lcd_send_cmd(0xC0); lcd_display("VOLTAGE:"); lcd_send_cmd(0xC9); lcd_send_data((voltage1/1000)+48); lcd_send_data(((voltage1/100)%10)+48); lcd_send_data(0x2E); lcd_send_data(((voltage1/10)%10)+48); lcd_send_data((voltage1%10)+48); } } /* USER CODE END 3 */ } void lcd_display(unsigned char *s) { while(*s) { lcd_send_data(*s++); HAL_Delay(50); } } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET); /*Configure GPIO pins : PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */