This discussion has been locked.
You can no longer post new replies to this discussion. If you have a question you can start a new discussion

Is this a C51 / uvision bug?

Hi all
Below is the result of some debugging. I have isolated some code from a bigger project and have put it into a stand-alone project.

I basically don't understand why I can do right bit-shifting and AND'ing on single line, when I can't do left bit-shifting and AND'ing on single line.

If it isn't a bug, then what have I missed?

I have included many comments to describe my problem

#include <ADUC832.H>
#include <string.h>

void main(void) {


char ascii[] = "MC";
unsigned char pdu[3];
int w=0, r=0, len;
char ch1, ch2, rr, rl;


 /*  This is what I want to do:

  while-loop run 1:
     1: Assign to var 'ch1':   ch1 = 'M' (= 0x4D = 0100 1101)
     2: Assign to var 'ch2':   ch2 = 'C' (= 0x43 = 0100 0011)
     3: Assign to var 'w'  :     w = 0
     4: OR together the following:
         ((ch1 >>(w%7))&0x7F) | ((ch2 <<(7-(w%7)))&0xFF);
     <=>     0100 1101        |       1000 0000
     <=>                  1100 1101
     <=>                     0xCD

  while-loop run 2:
     1: Assign to var 'ch1':   ch1 = 'C' (= 0x43 = 0100 0011)
     2: Assign to var 'ch2':   ch2 = 0x00
     3: Assign to var 'w'  :     w = 1
     4: OR together the following:
         ((ch1 >>(w%7))&0x7F) | ((ch2 <<(7-(w%7)))&0xFF);
     <=>     0010 0001        |       0000 0000
     <=>                  0010 0001
     <=>                     0x21

 */

len=strlen(ascii);

while (r<len) {

 // ------ First OR-part  -----------------------
 // -------Both versions below are OK  ----------

      // -- VER 1: OK
      //  ch1 = ascii[r];
      //  rr  = (w%7);
      //  ch1 = (ch1 >> rr) & 0x7F;

      // -- VER 2: OK
        ch1 = (ascii[r] >> (w%7)) & 0x7F;    // Bit-shifting and AND'ing
                                             // may be done in one line

 // ------  Second OR-part  -----------------------------
 //-------  Both versions below are NOT OK ??  ----------

      // -- VER 1: OK
        ch2 = ascii[r+1];
        rl = (7-(w%7));
        ch2 = (ch2 << rl) & ((char)0xFF);    // Bit shift and AND'ing can be
                                             // done in one line, IF type cast
                                             // is used - why?
      //  ch2 = ch2 & 0xFF;                  // If splitting into new line
                                             // type cast is not required?

      // -- VER 2: NOT OK
      //  ch2 = (ascii[r+1] << (7-(w%7))) & 0xFF;  // type cast doesn't help
      //  ch2 = ch2 & 0xFF;  // AND'ing must be on seperate line ?


    //----------------------------------------------------------------
    // IS THIS A BUG ??
    //----------------------------------------------------------------
    // Why can we bit-shift and do the AND'ing in a single line
    // for the first OR-part above, but cannot do it for the second
    // OR-part where bit-shifting and AND'ing must be on two seperate
    // lines ???
    //----------------------------------------------------------------

// ------ Do the actual OR'ing -------
        pdu[w]= (ch1 | ch2) ;

        if ((w%7)==6)
           r++;
        r++;
        w++;
    }
    pdu[w]=0; // terminator

    //----------------------------------------------------------------
    // Run to here in debugger and look at content of
    // local variable 'pdu'.
    // When using 'NOT OK' versions from above
    // pdu will contain {0x4D, 0x21, 0x00}
    // and not {0xCD, 0x21, 0x00} as the 'OK' versions
    // produce.
    //----------------------------------------------------------------

   while(1);

}

Parents
  • I have understood that from my very first post "because the commpiler behaves in an inconsistent way" confound it DO YOU GET IT NOW?

    The compiler behaves as documented in the manual. The only inconsistency is between that and your expectations. You have clearly not understood that from your very first post as you describe the behaviour as wrong.

    "If you read through, you will find that I have never used the word 'wrong' as to the compilers behaviour but constantly the word 'inconsistent'"

    No. In the quote below you describe the output of the compiled code as wrong:

    this (which is the same concatenated) GSloadCnt = (((GClwdt * GClhgt) / GX_ATT.FSLlin) / 2);
    gives the wrong result (zero)

    You wrote it - it really is pointless for you to deny it.

Reply
  • I have understood that from my very first post "because the commpiler behaves in an inconsistent way" confound it DO YOU GET IT NOW?

    The compiler behaves as documented in the manual. The only inconsistency is between that and your expectations. You have clearly not understood that from your very first post as you describe the behaviour as wrong.

    "If you read through, you will find that I have never used the word 'wrong' as to the compilers behaviour but constantly the word 'inconsistent'"

    No. In the quote below you describe the output of the compiled code as wrong:

    this (which is the same concatenated) GSloadCnt = (((GClwdt * GClhgt) / GX_ATT.FSLlin) / 2);
    gives the wrong result (zero)

    You wrote it - it really is pointless for you to deny it.

Children