Arm Community
Arm Community
  • Site
  • User
  • Site
  • Search
  • User
Arm Community blogs
Arm Community blogs
SoC Design and Simulation blog Moortec “Let’s Talk PVT Monitoring” Series with CTO Oliver King - Thermal Issues Associated with Modern SoCs
  • Blogs
  • Mentions
  • Sub-Groups
  • Tags
  • Jump...
  • Cancel
More blogs in Arm Community blogs
  • AI blog

  • Announcements

  • Architectures and Processors blog

  • Automotive blog

  • Embedded and Microcontrollers blog

  • Internet of Things (IoT) blog

  • Laptops and Desktops blog

  • Mobile, Graphics, and Gaming blog

  • Operating Systems blog

  • Servers and Cloud Computing blog

  • SoC Design and Simulation blog

  • Tools, Software and IDEs blog

Tags
  • 16nm
  • process detector
  • Embedded
  • pvt monitoring
  • analog
  • finfet
  • moortec
  • soc
  • voltage monitor
  • temperature sensor
  • ip
  • 28nm
Actions
  • RSS
  • More
  • Cancel
Related blog posts
Related forum threads

Moortec “Let’s Talk PVT Monitoring” Series with CTO Oliver King - Thermal Issues Associated with Modern SoCs

Moortec
Moortec
June 17, 2016
5 minute read time.

Thermal Issues Associated with Modern SoCs - How Hot is Hot?

In this, the third instalment of the "Let's Talk PVT Monitoring" series Moortec CTO, Oliver King talks about the thermal issues associated with modern SoCs and ponders the question How Hot is Hot? Oliver has been leading the development of compelling in-chip monitoring solutions to address problems associated with ever-shrinking System-on-Chip (SoC) process geometries. An analogue and mixed signal design engineer with over a decade of experience in low power design, Oliver is now heading up the expansion of Moortec's IP portfolio into new products on advanced nodes.

Moortec CTO Oliver King.jpg

Questions:

1. What are the thermal issues of modern SoCs?

Gate density has been increasing with each node and that pushes up power per unit area. This has become an even more significant issue with FinFET processes, where the channels are more thermally isolated than planar processes before them.

Then there is leakage, which in the last few planar nodes was an issue that led to significant power consumption. That has been pegged back somewhat with the latest FinFET nodes but it will continue to be an issue going forward as we look toward the next generation FinFET nodes and beyond.

In addition to these issues, if you are developing for consumer products, smartphones, tablets, that kind of thing then you are always limited in terms of how much heat you can dissipate because you don’t have active cooling systems such as fans, and obviously the upper temperature limit of the product is quite low. In addition, the hotter things get the bigger the issue of reliability and lifetime of device parts which is perhaps the biggest issue going forward, as we are then talking about electro-migration, hot carriers, and BTI effects which we have discussed in the past.

2. How hot is hot?

That all depends on the application! That said, one thing that is interesting now with the growth in automotive applications, such as ADAS and infotainment is we are starting to see that even 125°C is not high enough as those markets demand higher temperature operation.

So for those applications hot is hotter than it may be for say a consumer device where 40°C for the product might be your limit. Then there will be a thermal mass to factor in so you will have devices within that product which are much hotter.

But the key thing for our customers is knowing device temperature accurately. The more accurately they know the temperature  the closer to the limit they can operate. That is really what it is all about for modern SoCs; being as close as you can to the limit without stepping over it. And because temperature has an exponential effect in terms of ageing, the accuracy of temperature sensors is correspondingly important.

3. Trend in use

Certainly a number of years ago when we started developing temperature sensors, they were being used generally just for device characterisation, HTOL, burn in tests and those kind of things. Then they started to be used for high temperature alarms, either to switch off the device or turn on a fan. But we have seen over the last couple of years more applications which rely on these monitors. Applications like Dynamic Voltage and Frequency Scaling (DVFS), Adaptive Voltage Scaling (AVS) and lifetime reliability. These applications make use of the sensor data in a feedback control loop. So certainly the use cases now are much more varied.

The trend for the recent past has been driven by consumer electronics and in those cases you are really trying to get a lot out of a device whilst not making it too hot, because it’s in your pocket, or its on your lap or whatever, so this has driven the use cases. I believe that we are moving into a space where just the cost of the advanced node technologies mean you want to get everything out of a device , and all of the different levels of over design that are added to the process, the design flow, take away performance. As a result, having sensors on chip, whether they are temperature sensors, or process or voltage allow you to get that little more performance out of your device and, or improve reliability.

4. What requirements does that place on temperature sensors?

The most important thing from where we sit is accuracy. The greater the uncertainty in the measured result, the less you can do with it. So for us the key motivation is accuracy. But beyond that the next thing is robustness and testability, because you are now using these sensors in application areas where their failure can cause system failure. This means you need to be able to test them, you need to be able to rely on them. So we are doing a lot in that sense to ensure that there is testability and there is robustness in our products.

5. How does Moortec address those requirements?

The first thing is that we meet the accuracy requirements and we aim to exceed them. In terms of testability and robustness we have done a lot of work to be able to provide online fault detection and diagnosis of our sensors.

This means you can interrogate them and understand if there is a fault. Firstly, it will tell you if there is a fault, and secondly you can then ask it what is wrong and it can give you certain amount of  health diagnosis. In addition,  we support scan chains to increase overall test coverage.

Then on top of that we believe ease of integration is an important factor. Not because it gives you a more accurate temperature sensor, but to make it easier for the customer to implement and use the product.

About the interviewee

Oliver King is the Chief Technology Officer of Moortec Semiconductor. Before joining Moortec in 2012, Oliver was part of the analogue design methodology team at Dialog Semiconductor and prior to that was a senior design engineer at Toumaz Technology. Oliver graduated from The University of Surrey in 2003 with a degree in Electrical and Electronic Engineering.

About Moortec Semiconductor

Moortec Semiconductor, established in 2005, provide high quality analog and mixed-signal Intellectual Property (IP) solutions world-wide specialising in die monitoring. Having a track record of delivery to tier-1 semiconductor and product companies, Moortec provide a quick and efficient path to market for customer products and innovations. For more information, please visit www.moortec.com

Contact: Ramsay Allen, +44 1752 875133, ramsay.allen@moortec.com

Anonymous
SoC Design and Simulation blog
  • Performance verification with AMBA Viz

    Tony Nip
    Tony Nip
    Run consistent latency and bandwidth checks on CMN interconnects using AMBA Viz’s new performance script—no API expertise needed.
    • June 30, 2025
  • Understanding Scandump: A key silicon debugging technique

    Vincent Yang
    Vincent Yang
    Scandump is highly effective in silicon debugging as it can capture most internal states through scan chains, making it invaluable in diagnosing silicon issues.
    • June 5, 2024
  • Introduction to AMBA Viz

    Tony Nip
    Tony Nip
    AMBA Viz enables faster debug and performance analysis for cycle-accurate simulation and emulation, even for complex interconnects and AMBA bus protocols.
    • May 31, 2024