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The fundamental problem of model compression: what to choose?
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Challenges

In principle, we want to explore all possible combinations, and select the best. But:

• Many compression schemes =⇒ many algorithms

• How to maintain a library of many compressions?
• How to make it user friendly?

• many algorithms =⇒ many failure points

• How to make it extensible and easily maintainable?

We propose a software based on the Learning-Compression (LC) algorithm:

• single algorithm—many compressions

• extensible, modular, and fast

• impressive compression results

• open source: BSD 3-clause license



The LC algorithm: formulation

Given a network with weights w and loss L:

min
w,Θ

L(w) s.t. w = ∆(Θ)
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The compression details are abstracted in ∆(Θ):

• e.g., low-rank: ∆(Θ) = UVT where Θ = {U,V}
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The LC algorithm (cont.)

The problem (1) can be solved by alternation of these two steps (while driving µ → ∞),

which form the basis of our software:

• Learning (L) step:

min
w

L(w) +
µ

2
‖w −∆(Θ)‖2

• This is a regular training of the model, but with a quadratic regularization term
• When you train a network, you already have the L step.

• Compression (C) step:

min
Θ

‖w −∆(Θ)‖2

• Independent of the loss, neural network structure, and the dataset.
• We provide a library of different C steps for many different compressions.



The library of implemented compressions

Type Forms

Quantization

Adaptive Quantization into {c1, c2, . . . cK}
Binarization into {−1, 1} and {−c, c}
Ternarization into {−c, 0, c}

Pruning

ℓ0-constraint (s.t., ‖w‖
0
≤ κ)

ℓ1-constraint (s.t., ‖w‖
0
≤ κ)

ℓ0-penalty (α‖w‖
0
)

ℓ1-penalty (α‖w‖
1
)

Low-rank

Low-rank compression to a given rank

Low-rank with automatic rank selection for FLOPs reduction

Low-rank with automatic rank selection for storage compression

Additive Combinations

Quantization + Pruning

Quantization + Low-rank

Pruning + Low-rank

Quantization + Pruning + Low-rank



Easy exploration of compressions

Having an L-step implementation (you only need one), definition of compression is very simple:

quantize each layer with

separate codebooks

compression_tasks = {
Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),
Param(l2.weight): (AsVector, AdaptiveQuantization(k=2)),
Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}

prune all but 5%

compression_tasks = {
Param([l1.weight, l2.weight, l3.weights]):

(AsVector, ConstraintL0Pruning(kappa=13310)) # 13310 = 5%
}

prune first layer, low-rank to

second, quantize third

compression_tasks = {
Param(l1.weight): (AsVector, ConstraintL0Pruning(kappa=5000)),
Param(l2.weight): (AsIs, LowRank(target_rank=10))
Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))

}



Example: Low-rank AlexNet models with automatic rank selection

Our framework achieves competitive results in many compression schemes.

For example, using our code for rank-selection, we can achieve considerable speed-up on AlexNet:

MFLOPs top-1 top-5 ρFLOPs

Caffe-AlexNet [1] 724 42.70 19.80 1.00

our, scheme 2, (L1) 238 41.81 19.40 3.01

our, scheme 2, (L2) 190 42.07 19.54 3.81

our, scheme 2, (L3) 151 42.69 19.83 4.79

Kim et al. [2], Tucker 272 n/a 21.67 2.66

Tai et al. [3], scheme 2 185 n/a 20.34 3.90

Wen et al. [4], scheme 1 269 n/a 20.14 2.69

Kim et al. [5], scheme 2 272 43.40 20.10 2.66

Yu et al. [6], filter prun. 232 44.13 n/a 3.12

Li et al. [7], filter prun. 334 43.17 n/a 2.16

Ding et al. [8], filter prun. 492 43.83 20.47 1.47

ρFLOPs — reduction in FLOPs. see Idelbayev and Carreira-Perpiñán [9] for full details

Not only theoretical reduction!

Model
GPU of Jetson Nano

time, ms speed-up

AlexNet 23.36 1.00

L1 11.59 2.01

L2 8.88 2.63

L3 7.11 3.29



Example: Additive compressions to achieve smallest AlexNet-s

The codebase allows easy exploration of new compression mechanisms. For example, we can

further compress low-rank AlexNet models to target storage:

Model top-1 size, MB MFLOPs

Caffe-AlexNet Jia et al. [1] 42.70 243.5 724

L1 → Q (1-bit) + P (0.25M) 41.56 3.7 238

L2 → Q (1-bit) + P (0.25M) 41.91 2.8 190

o
u

r

L3 → Q (1-bit) + P (0.25M) 42.85 2.2 151

AlexNet-QNN of Wu et al. [10] 44.24 13.0 175

P→1Q of Han et al. [11] 42.78 6.9 724

P→2Q of Choi et al. [12] 43.80 5.9 724

P→3Q of Tung and Mori [13] 42.10 4.8 724

P→4Q of Yang et al. [14] 42.48 4.7 724

P→5Q of Yang et al. [14] 43.40 3.1 724

filter pruning of Li et al. [7] 43.17 232.0 334
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Source code and library features

Our code is written in Python using PyTorch, and open source under BSD 3-clause license:

https://github.com/UCMerced-ML/LC-model-compression

Using the provided code, you will be able to:

• replicate all reported experiments

• compress your own models with many available compression schemes

Our library is:

• modular and easily extensible

• only requires the L-step implementation: the regular learning of the model (using SGD)

• based on solid optimization principles

• single algorithm—many compressions

• time proven (development since 2017), with many publications [9, 15, 16, 17, 18, 19, 20, 21]

https://github.com/UCMerced-ML/LC-model-compression
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[16] M. Á. Carreira-Perpiñán and Y. Idelbayev, “Model compression as constrained optimization, with application to neural nets. Part II: Quantization,” Jul. 13 2017,

arXiv:1707.04319.

[17] ——, ““Learning-compression” algorithms for neural net pruning,” in Proc. of the 2018 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’18), Salt

Lake City, UT, Jun. 18–22 2018, pp. 8532–8541.
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