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ABSTRACT

Compression of the neural network models has become an important systems problem for practical machine

learning workflows. While various compression mechanisms and algorithms have been proposed to address

the issue, many solutions rely on highly specialized procedures and require substantial domain knowledge to

use efficiently. To streamline the compression to a large body of users, we propose an extensible open-source

library based on the ideas of learning-compression (LC) algorithm—the LC toolkit. The software is written in

Python using Pytorch and currently supports multiple forms of pruning, quantization, and low-rank compressions

that can be applied to the model’s parts individually or in combination to reduce model’s size, computational

requirements, or the on-device inference time. The toolkit’s versatility comes from the separation of the model

learning from the model compression in the LC algorithm: once the learning (L) step is given, any compression

(C) steps can be used for the model.

1 INTRODUCTION

The widespread application of deep neural networks in

practical tasks has been fueled by their state-of-the-art per-

formances in the fields of computer vision, natural lan-

guage processing, imaging, and other machine learning do-

mains. To achieve the best performance, these very deep

neural networks require many million weights and enor-

mous computational resources. However, in terms of ac-

tual deployment, models are often required to be running

on smaller and less powerful devices like phones, cameras,

and watches. The mismatch between neural network’s re-

source demands and the constraints of the systems give rise

to the problem of model compression: how to reduce the

model’s requirements in terms of disk storage, computation

speed, and/or power demands?

The need for a model compression resulted in plethora

of works addressing the problem using different means of

compression like quantization, pruning, low-rank decom-

position or tensor factorizations. However, among these

strands in neural net compression approaches, in our view,

the fundamental problem is that in practice, one does not

know what type of compression (or combination of com-

pression types) may be the best for a given network. In

principle, it may be possible to try different existing com-
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pression schemes with corresponding algorithms, assuming

one can find the implementations of those. Though, practi-

cally it is impossible due to several factors:

• Code availability and generality Compression algo-

rithms published in research literature have ad-hoc

codebase: usually, the provided scripts are highly spe-

cialized for a small set of architectures discussed in

the paper itself.

• Compression combinations If a user wants to com-

bine several combinations in some way (say, addi-

tively, or by mixing and matching) it is unclear how

to achieve it in a systematic way. Very few papers (if

at all) address the question of efficiently combining

diverse compressions that would be applicable for a

large class of techniques.

• Maintenance If one manages to collect a set of di-

verse, state-of-the-art compression techniques in a

single place, maintaining such a collection becomes

a very complex task full of technical-debt: every

model’s compression is as if you have a separate soft-

ware altogether with minimal reuse of the code.

Aforementioned issues highlight a need for a generic soft-

ware that will allow to compress machine learning models

with a minimal effort from the end user while promoting

good software engineering principles like code reuse and

testing. Such a software package would be beneficial for

the entire community: for the researchers to establish solid

comparisons and baselines, for the practitioners to quickly

reduce model’s size or computational demands, and for the
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designers of ML hardware, software, and systems—to have

a single entry point to the field of model compression.

Our ongoing research in model compression is focused

on solving the generic form of the problem given by

a constrained optimization formulation. As we have

shown in a series of publications (Carreira-Perpiñán, 2017;

Carreira-Perpiñán & Idelbayev, 2017; 2018; Idelbayev

& Carreira-Perpiñán, 2020a;b; 2021a;b;c;d) such a for-

mulation allows to efficiently handle multiple compres-

sions of interest like pruning (Carreira-Perpiñán & Idel-

bayev, 2018), quantization (Carreira-Perpiñán & Idel-

bayev, 2017), low-rank compression (Idelbayev & Carreira-

Perpiñán, 2020a; 2021a;b), resource-targeted (Idelbayev &

Carreira-Perpiñán, 2020a) and device-targeted (Idelbayev

& Carreira-Perpiñán, 2021c) compressions in a unified al-

gorithmic footing while achieving state-of-the-art results.

Our efforts have culminated in an open-source1, flexible,

and extensible software framework that allows to compress

a neural network with any of the supported compressions

(Table 1).

The theoretical foundation that allows us to combine di-

verse compression schemes under the same algorithmic um-

brella is in the learning-compression algorithm (Carreira-

Perpiñán, 2017) that decouples the model training (L step)

from the model compression (C step). The optimization

happens by an iterative alternation of L and C steps. As

we explain in sec 2, the form of the L step is given as

training of a regular machine learning problem regardless

of the associated compression scheme, and the C step of-

ten comes as a standard signal compression problem with

a well-studied solution independent of the model structure

and weights. This separation makes the framework and the

software modular: we can change the compression type

by simply calling a different compression routine (e.g., k-

means instead of the SVD), with no other changes to the

algorithm.

What makes our approach special? The LC algorithm

is efficient in runtime; it does not take much longer than

training the uncompressed model in the first place. The

compressed models perform competitively and allow the

user to easily explore the space of prediction accuracy of

the model vs compression ratio (which can be defined in

terms of memory, inference time, energy or other crite-

ria). Our code has been extensively tested since 2017

through usage in internal research projects, and has re-

sulted in multiple publications that improve the state of

the art in several compression schemes (Carreira-Perpiñán

& Idelbayev, 2017; 2018; Idelbayev & Carreira-Perpiñán,

2020a;b; 2021a;b;c;d).

But what truly makes the approach practical is its flexibil-

ity and extensibility. If one wants to compress a specific

1
https://github.com/UCMerced-ML/LC-model-compression

Type Forms

Quantization
Adaptive Quantization into {c1, c2, . . . cK}
Binarization into {−1, 1} and {−c, c}
Ternarization into {−c, 0, c}

Pruning

ℓ0-constraint (s.t., ‖w‖
0
≤ κ)

ℓ1-constraint (s.t., ‖w‖
0
≤ κ)

ℓ0-penalty (α‖w‖
0
)

ℓ1-penalty (α‖w‖
1
)

Low-rank
Low-rank compression to a given rank
Low-rank with automatic rank selection

Additive

Combinations

Quantization + Pruning
Quantization + Low-rank
Pruning + Low-rank
Quantization + Pruning + Low-rank

Table 1. Currently supported compression types, with their exact

forms. These compression can be defined per one or multiple

layers, and different compression can be applied to different parts

of the model.

type of model with a specific compression scheme, all is

needed is to pick a corresponding L step and C step. It

is not necessary to create or look for a specific algorithm

to handle that choice of model and compression. Further-

more, one is not restricted to a single compression scheme;

multiple compression schemes (say, low-rank plus pruning

plus quantization) can be combined automatically, so they

best cooperate to compress the model. The compression

schemes that our code already supports make it possible

for a user to mix and match them as desired with minimal

effort. We expect to include further schemes in the future.

2 MODEL COMPRESSION AS A

CONSTRAINED OPTIMIZATION

The goal of model compression is to find a low-dimensional

parametrization ∆(Θ) of the weights w so that correspond-

ing decompressed model has (locally) optimal loss. There-

fore the model compression as a constrained optimization

problem is defined as:

min
w,Θ

L(w) + λC(Θ) s.t. w = ∆(Θ). (1)

Here the λC(Θ) term with positive scalar λ controls the

amount of compression as measured by the deployment

needs: it might be a storage size, number of FLOPs, or en-

ergy consumption requirements. Notice that compression

cost is defined wrt parameters of the compressed model.

The problem in (1) is constrained, nonlinear, and usually

non-differentiable with respect to the compression param-

eters Θ (e.g., when compression is binarization). To effi-

ciently solve it, the LC-algorithm is obtained by convert-

ing this problem to an equivalent formulation using penalty

methods (quadratic penalty or augmented Lagrangian) and

https://github.com/UCMerced-ML/LC-model-compression
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w

(reference)

w
∗ (optimal

compression)

∆(ΘDC)
(direct

compression)

w-space

(uncompressed

models)

w
∗(µ) feasible models

decompressible by ∆

input training data and model with parameters w

w← w = argminw L(w) pretrained model

Θ← Θ
DC = Π(w) init compression

for µ = µ0 < µ1 < · · · <∞
w← argminw L(w) + µ

2
‖w −∆(Θ)‖

2
L step

Θ← argminΘ ‖w −∆(Θ)‖
2
+ λC(Θ) C step

if ‖w −∆(Θ)‖ is small enough then exit the loop

return w, Θ

Figure 1. Top: The illustration of the model compression defini-

tion given by problem (1). The loss function L(w) is defined

over entire w-space, depicted with green contours, and has a min-

imum at point w. The space of decompressible models (given by

the form of of ∆) is illustrated in gray. Directly compressing the

pre-trained model by setting Θ
DC = Π(w) results in sub-optimal

solution. To obtain the constrained minima of the problem (the

point w∗), the LC algorithm alternates between L and C steps

while driving parameter µ → ∞, which follows the path w
∗(µ).

Bottom: The pseudocode of LC algorithm using the augmented

Lagrangian method.

employing an alternating optimization. This results in an al-

gorithm that alternates two generic steps while slowly driv-

ing the penalty parameter µ→∞:

• L (learning) step: minw L(w) + µ

2
‖w −∆(Θ)‖

2
.

This is regular training of the uncompressed model but

with a quadratic regularization term. This step is inde-

pendent from the form of chosen compression.

• C (compression) step: min
Θ

‖w −∆(Θ)‖
2
+λC(Θ).

This means finding the best lossy compression of

the current uncompressed model weights w in the ℓ2
sense, and the solution is given by orthogonal pro-

jection on the feasible set. The solution of this step

depends on the actual form of of the compression

scheme (∆(Θ)). However, this step is independent

of the model loss and does not require training set.

We will be using the quadratic penalty (QP) formulation

throughout this paper to make exposition simpler. Yet, in

practice, we implement the augmented Lagrangian (AL)

version which has an additional vector of Lagrange mul-

tipliers. Fig. 1 illustrates the idea of model compression

as constrained optimization, and depicts the traced solution

w
∗(µ).

Our software capitalizes on the separation of the L and C

steps: to apply a new compression mechanism under the

LC formulation, the software requires only a new C step

corresponding to this mechanism. Indeed, the compression

parameter Θ enters the L step problem as a constant regard-

less of the chosen compression type. Therefore, all L steps

for any combination of compressions have the same form.

Once the L step has been implemented for a model, any

possible compression (C steps) can be applied.

More importantly, this separation allows using the best

tools available for each L and C steps. For modern neu-

ral networks, the L step optimization means performing it-

erations over the dataset (for SGD) and requires hardware

accelerators. The formulation of the C step, on the other

hand, is given by ℓ2 minimization, and as we will see in

the next chapter, its solutions can be computed using effi-

cient algorithms. In fact, for certain compression choices,

the C-step problem is well studied and has a history of its

usage on its own merit in the fields of data and signal com-

pression. From the software engineering perspective, the

separation of L and C steps makes code robust and allows

us to thoroughly test and debug each component separately.

3 THE DESIGN OF THE LC TOOLKIT

There are three important concepts to run a network com-

pression using the LC algorithm: implementation of the

L step, implementation of the C step, and the definition

of the correspondence between compression types and pa-

rameters of the neural network. We discuss these building

blocks next.

L step We give to the user the full control over the L step

through the functional interface of the Python. This gives

a fine-grained control to the user on the model’s training

which involves many systems considerations like hardware

utilization, data source pulling, and other essential hard-

ware/data steps. With such a control, user can best utilize

the available hardware like TPU/GPU or custom learning

environments. A typical implementation of the L step in

PyTorch for our toolkit is given below:

def my_l_step(model, lc_penalty, args**):

# ... skipped ...

loss = model.loss(out_, target_) + lc_penalty()

loss.backward()

optimizer.step()

# ... skipped ...
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C step The C steps (including the ones in Table 1) are

implemented as subclasses of CompressionTypeBase.

This allows to extend the library with new compression

schemes via a simple class inheritance. Below we give an

example implementation of the C step for binarization:

class ScaledBinaryQuantization(CompressionTypeBase):

def compress(self, data):

a = np.mean(np.abs(data))

quantized = 2 * a * (data > 0) - a

return quantized

Compression tasks The user instructs the toolkit on in-

tended compression and its usage parameters through com-

pression tasks structure which is a simple dictionary of the

form: (network parameters) → (compression view, com-

pression type). Here, the parameters are the subset of

model weights w that are going to be compressed. The

compression view is an internal structure that handles re-

shaping of the weights into a suitable form, e.g., reshaping

the weights of a convolutional layer (typically a tensor) into

a matrix to apply low-rank compression.

Our strategy of handling compression mappings allows to

combine the compressions in a mix-and-match way. For

example, consider the following mapping of:

(layer 1, layer 3) → (as a vector, quantization k = 6),

(layer 2) → (as is, low-rank with r = 3)

Here we want to quantize the first and third layer of the

network using quantization, but apply low-rank compres-

sion with a target rank of 3 to the weights of the second

layer. Such desired compression structure translates word-

by-word into a Python code in our toolkit:

from lc.torch import ParameterTorch as P, AsVector, AsIs

compression_tasks = {

P([l1.weight, l3.weight]): (AsVector, Quantization(k=6)),

P(l2.weight): (AsIs, LowRank(rank=3))

}

Running the software To compress a model, the user

needs to construct an lc.Algorithm object and provide

the structure of compression mappings (compression tasks),

the implementations of the L and C steps, and the schedule

of the µ-values.

4 EXPERIMENTAL EVALUATION

Our library allows easy exploration of various compres-

sions and their combinations. To demonstrate its effec-

tiveness we compress AlexNet trained on ILSVRC2012

dataset (Russakovsky et al., 2015) with some of the sup-

ported compressions. We first compress the AlexNet using

automatic low-rank compression (see points L1,L2,L3 on

Fig 2). While these low-rank models achieve a consider-

able amount of compression wrt other low-rank models, we

further compress it with additive combination of quantiza-

tion and pruning: which results in state-of-the-art compres-

sion results on AlexNet. Our L→Q+P models achieve get

112× compression (2.16MB) without degradation in accu-

racy and 66× compression with more than 1% improve-
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Inference time and speed-up for a single image

Model
GPU of Jetson Nano

time, ms speed-up

Caffe-AlexNet 23.36 1.00

L1 → Q (1-bit ) + P (0.25M) 11.59 2.01

L2 → Q (1-bit ) + P (0.25M) 8.88 2.63

L3 → Q (1-bit ) + P (0.25M) 7.11 3.29

Figure 2. Compression schemes and their combinations available

in our library when applied to AlexNet. The only change required

to obtain our results is in writing of a new compression task def-

inition (about 10 lines of Python code). Mark descriptions: Q

(quantization), P (pruning), L (low-rank). If compressions are

chained, we denote it with ‘→’, e.g., P→Q means network is

quantized then pruned. Other results are as follows: P→1Q (Han

et al., 2016), P→2Q (Choi et al., 2017), P→3Q (Tung & Mori,

2018), P→4Q (Yang et al., 2020)P→5Q (Yang et al., 2020), QNN

(Wu et al., 2016), Q-DoReFa (Zhou et al., 2016), Q-BWN (Raste-

gari et al., 2016),Q-ADMM (Leng et al., 2018), P-NISP (Yu et al.,

2018).

ment in the top-1 accuracy when compared to the Caffe-

AlexNet. These results do not come at the cost of higher

inference speed, in fact, our 66× compressed model (L1→
Q+ P) runs 2× faster on Jetson Nano edge device, and the

112× compressed AlexNet runs 3× faster.

5 CONCLUSION

The fields of machine learning and signal compression have

developed independently for a long time: machine learning

solves the problem of training a deep net to minimize a de-

sired loss on a dataset, while signal compression solves the

problem of optimally compressing a given signal. The LC

algorithm allows us to seamlessly integrate the existing al-

gorithms to train deep nets (L step) and algorithms to com-

press a signal (C step) by tapping on the abundant literature

in the machine learning and signal compression fields. We

invite practitioners to try out our library and contribute new

forms of compressions.



A Flexible, Extensible Software Framework for Model Compression Based on the LC Algorithm

REFERENCES
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Carreira-Perpiñán, M. Á. and Idelbayev, Y. Model compres-

sion as constrained optimization, with application to neu-

ral nets. Part II: Quantization. arXiv:1707.04319, July 13

2017.
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