
A Compiler-aware Framework of Network 
Pruning Search Achieving Beyond Real-

Time Mobile Acceleration
Yanyu Li, Geng Yuan, Zhengang Li, Wei Niu, Pu Zhao, 

Peiyan Dong, Yuxuan Cai, Xuan Shen, Zheng Zhan, 
Zhenglun Kong, Qing Jin, Bin Ren, Yanzhi Wang, Xue Lin

Northeastern University & College of William and Mary



Introduction
Deep Learning (DL)
• Huge success in academia, industry, 

and real life

Large Model Sizes: Challenges
• It is projected that a lot of deep 

learning systems (the inference 
phase) will be deployed in edge 
devices

• The computational complexity 
makes it hard to deploy large-scale, 
multi-modal deep learning systems



Background

 Network pruning

1. Pruning Scheme

2. Pruning Algorithm



Background
 Neural Architecture Search (NAS)
• Reinforcement Learning (RL) methods 
• Evolution methods 
• One-shot Training
• Gradient-based methods

… …
 Mobile DNN Framework
• DNN inference framework 
• Compiler-based optimization



Contribution

We bridge the gap between network 
pruning and NAS. We develop a 
compiler-aware framework of network 
pruning search, maximizing accuracy 
while satisfying inference latency 
constraint.

We propose comprehensive compiler 
optimizations supporting different 
pruning schemes and sparse model 
inference with per-layer pruning 
schemes.

We design a systematic search 
acceleration strategy, integrating pre-
trained starting points, fast accuracy 
and latency evaluations, and Bayesian 
optimization. 

Our NPS framework achieves by far the 
best mobile acceleration: 6.7ms, 5.9ms, 
and 3.9ms ImageNet inference times 
with 77.0%, 75%, and 71% Top-1 
accuracy, respectively, on an off-the-
shelf mobile phone.



Proposed Fine-grained Structured Pruning

 Proposed New Pruning Schemes:

1. Block-punched pruning

2. Block-based pruning

 Corresponding Compiler Optimizations

Impact of block size



Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm

Take into consideration:

• Different Filter Types (Kernel Sizes)

• Different Pruning Schemes



• Phase 1: Replacement of 
Mobile-Unfriendly 
Operations Different Pruning 
Schemes

• Phase 2: NPS Scheme 
Search

• Phase 3: Pruning Algorithm 
Search

8

Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm



Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm

Search Space of NPS Scheme
• Per-layer pruning schemes
• Per-layer pruning rate

Q-Learning with Baysian Optimization

Fast Evaluation Methods
• One-shot Pruning and Early Stopping for Fast Accuracy Evaluation
• Overlapping Compiler Optimization and Accuracy Evaluation

9



Experiment results

• Our compiler optimization itself 
can effectively speed up 
inference by up to 46% and 
141% (on MobileNet-V3) without 
incorporating NPS compared to 
the currently best framework 
MNN on mobile CPU and GPU, 
respectively. 

• NPS: 77% -- 6.7ms
• NPS: 75% -- 5.9ms
• NPS: 71% -- 3.9ms



Experiment results



Thank You!

12


	A Compiler-aware Framework of Network Pruning Search Achieving Beyond Real-Time Mobile Acceleration
	Introduction
	Background
	Background
	Contribution
	Proposed Fine-grained Structured Pruning�
	Proposed Unified Network Pruning and Architecture Search (NPS) Algorithm
	Proposed Unified Network Pruning and Architecture Search (NPS) Algorithm
	Proposed Unified Network Pruning and Architecture Search (NPS) Algorithm
	Slide Number 10
	Experiment results
	Thank You!

