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Introduction
Deep Learning (DL)
• Huge success in academia, industry, 

and real life

Large Model Sizes: Challenges
• It is projected that a lot of deep 

learning systems (the inference 
phase) will be deployed in edge 
devices

• The computational complexity 
makes it hard to deploy large-scale, 
multi-modal deep learning systems



Background

 Network pruning

1. Pruning Scheme

2. Pruning Algorithm



Background
 Neural Architecture Search (NAS)
• Reinforcement Learning (RL) methods 
• Evolution methods 
• One-shot Training
• Gradient-based methods

… …
 Mobile DNN Framework
• DNN inference framework 
• Compiler-based optimization



Contribution

We bridge the gap between network 
pruning and NAS. We develop a 
compiler-aware framework of network 
pruning search, maximizing accuracy 
while satisfying inference latency 
constraint.

We propose comprehensive compiler 
optimizations supporting different 
pruning schemes and sparse model 
inference with per-layer pruning 
schemes.

We design a systematic search 
acceleration strategy, integrating pre-
trained starting points, fast accuracy 
and latency evaluations, and Bayesian 
optimization. 

Our NPS framework achieves by far the 
best mobile acceleration: 6.7ms, 5.9ms, 
and 3.9ms ImageNet inference times 
with 77.0%, 75%, and 71% Top-1 
accuracy, respectively, on an off-the-
shelf mobile phone.



Proposed Fine-grained Structured Pruning

 Proposed New Pruning Schemes:

1. Block-punched pruning

2. Block-based pruning

 Corresponding Compiler Optimizations

Impact of block size



Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm

Take into consideration:

• Different Filter Types (Kernel Sizes)

• Different Pruning Schemes



• Phase 1: Replacement of 
Mobile-Unfriendly 
Operations Different Pruning 
Schemes

• Phase 2: NPS Scheme 
Search

• Phase 3: Pruning Algorithm 
Search
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Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm



Proposed Unified Network Pruning and Architecture 
Search (NPS) Algorithm

Search Space of NPS Scheme
• Per-layer pruning schemes
• Per-layer pruning rate

Q-Learning with Baysian Optimization

Fast Evaluation Methods
• One-shot Pruning and Early Stopping for Fast Accuracy Evaluation
• Overlapping Compiler Optimization and Accuracy Evaluation
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Experiment results

• Our compiler optimization itself 
can effectively speed up 
inference by up to 46% and 
141% (on MobileNet-V3) without 
incorporating NPS compared to 
the currently best framework 
MNN on mobile CPU and GPU, 
respectively. 

• NPS: 77% -- 6.7ms
• NPS: 75% -- 5.9ms
• NPS: 71% -- 3.9ms



Experiment results



Thank You!
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