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ABSTRACT
With the increasing demand to efficiently deploy DNNs on mobile edge devices, it becomes much more important
to reduce unnecessary computation and increase the execution speed. Prior methods towards this goal, including
model compression and network architecture search (NAS), are largely performed independently and do not fully
consider compiler-level optimization which is a must-do for mobile acceleration. In this work, we propose NPS, a
compiler-aware unified network pruning search and the corresponding comprehensive compiler optimizations
supporting different DNNs and different pruning schemes, which bridge the gap of weight pruning and NAS.
Our framework achieves 6.7ms, 5.9ms, and 3.9ms ImageNet inference times with 77%, 75% (MobileNet-V3
level), and 71% (MobileNet-V2 level) Top-1 accuracy respectively on an off-the-shelf mobile phone, consistently
outperforming prior work.

1 INTRODUCTION

The growing popularity of mobile AI applications and the
demand for real-time Deep Neural Network (DNN) exe-
cutions raise significant challenges for DNN accelerations.
However, the ever-growing size of DNN models causes in-
tensive computation and memory cost, which impedes the
deployment on resource limited mobile devices.

DNN weight pruning (Han et al., 2015; He et al., 2018) has
been proved as an effective model compression technique
that can remove redundant weights of the DNN models,
thereby reducing storage and computation costs simultane-
ously. Existing work mainly focus on unstructured pruning
scheme (Han et al., 2015) where arbitrary weight can be
removed as shown in Fig. 1 (a), and (coarse-grained) struc-
tured pruning scheme (Zhuang et al., 2018) to eliminate
whole filters/channels as shown in Fig. 1 (b). The former
results in high accuracy but limited hardware parallelism
(and acceleration), while the latter is the opposite. Recent
work (Dong et al., 2020; Niu et al., 2020) propose to prune
the weights in a more fine-grained manner, which can be
classified into block-based and pattern-based pruning as
shown in Fig. 1 (c) and (d). This kind of semi-structured
pruning preserves higher accuracy while also provides sig-
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nificant speedup with the assist of compiler-level code gen-
eration techniques.

Another active research area is the Neural Architecture
Search (NAS) (Zoph & Le, 2017), which designs more
efficient DNN architectures using automatic searching al-
gorithms. EfficientNet (Tan & Le, 2019) and MobileNetV3
(Howard et al., 2019) are representative lightweight net-
works obtained by using NAS approaches. Hardware-aware
NAS (Cai et al., 2018; Tan et al., 2019) has also been inves-
tigated targeting acceleration on actual hardware platforms.

Recently, compiler-assisted DNN inference frame-
works (Lane et al., 2015; Xu et al., 2018) have drawn broad
attention from both industry and academia. TensorFlow-
Lite (TFLite) (Ten), Alibaba Mobile Neural Network
(MNN) (Ali), and TVM (Chen et al., 2018) are representa-
tive state-of-the-art frameworks that support DNN inference
on mobile devices. Recent work PatDNN (Niu et al., 2020)
employs a set of compiler-based optimizations to support
specific pattern-based sparse DNN models to accelerate the
end-to-end inference on mobile devices. However, it still
lacks the support for a layer-wise sparse model with various
pruning schemes, which significantly limits the versatility
of such framework.

Pruning a DNN model for real-time AI applications on mo-
bile devices is a complex task because different types of
layers may prefer different types of pruning schemes. At the
same time, different layers may show different sensitivities
to the pruning ratio. Moreover, even under the similar prun-
ing ratio, different pruning schemes also perform different
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Figure 1. Different weight pruning schemes for CONV and FC
layers using 4D tensor and 2D matrix representation.

acceleration rates due to computing parallelism. Thus, we
bridge the weight pruning technique and NAS methods and
propose a einforcement learning (RL)-based network prun-
ing search framework to automatically search the best-suited
pruning configurations such as per-layer pruning scheme
and pruning ratio. Moreover, we propose multiple compiler
optimizations to enable fast code generation and support
inference acceleration with per-layer pruning schemes and
ratios. We incorporate the compiler optimized model in-
ference latency measured on the target mobile device as
a reward in the searching process, making our framework
compiler-aware.

Our key contributions include:

• We bridge the gap between network pruning and NAS.
We develop a compiler-aware framework of network
pruning search, maximizing accuracy while satisfying
inference latency constraint.

• We propose comprehensive compiler optimizations
supporting different pruning schemes and sparse model
inference with per-layer pruning schemes.

• We design a systematic search acceleration strategy,
integrating pre-trained starting points, fast accuracy
and latency evaluations, and Bayesian optimization.

• Our NPS framework achieves by far the best mobile
acceleration: 6.7ms, 5.9ms, and 3.9ms ImageNet infer-
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Figure 2. Overview of the proposed NPS framework.

ence times with 77.0%, 75%, and 71% Top-1 accuracy,
respectively, on an off-the-shelf mobile phone.

2 PROPOSED UNIFIED NETWORK
PRUNING SEARCH (NPS) FRAMEWORK

2.1 Overview of NPS Framework

Fig. 2 shows the proposed NPS framework. To take advan-
tage of recent NAS results and accelerate the NPS process,
we start from a pre-trained DNN model, and go through
three phases as shown in the figure.

Phase 1: Replacement of Mobile-Unfriendly Opera-
tions: Certain operators are inefficient to execute on mobile
devices (mobile CPU and GPU). For instance, certain activa-
tion functions, such as sigmoid, swish, require exponential
computation, and can become latency bottleneck on mobile
inference. These unfriendly operations will be replaced
by mobile-friendly alternatives such as hard-sigmoid and
hard-swish, with negligible effect on accuracy.

Phase 2: NPS Scheme Search: This phase uses a RL-
based NAS method to generates and evaluates candidate
NPS schemes, and finally chooses the best-suited one. The
search space includes per-layer pruning scheme and per-
layer pruning rate. To accelerate such search, we present
a meta-modeling procedure based on RL with Bayesian
Optimization (BO). A fast evaluation methods are developed,
tailored to NPS framework.

Moreover, we incorporate the overall DNN latency con-
straint effectively in the reward function of NPS scheme
search, ensuring that such constraint can be satisfied at the
search outcome. The overall DNN latency is actually mea-
sured on the target mobile CPU/GPU based on the candidate
NPS scheme currently under evaluation. We rely on actual
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measurement instead of per-layer latency modeling as many
prior NAS work. This is because our advanced compiler
optimizations incorporate a strong layer fusion beyond prior
compiler work, which is critical for efficient implementa-
tion of super-deep networks, and will make per-layer latency
modeling less accurate.

Phase 3: Pruning Algorithm Search: We search the most
desirable pruning algorithm to perform actual pruning and
retrain the remaining weights. The candidate pruning al-
gorithms include magnitude-based ones (Han et al., 2016),
ADMM-based algorithm (Zhang et al., 2018), etc.

2.2 Fast Evaluation Methods

We develop and adopt multiple tailored acceleration strate-
gies to facilitate fast evaluation in NPS scheme search. To
evaluate each generated candidate scheme during search,
we use the one-shot magnitude pruning instead of using
complex pruning algorithms. And we adopt early stop-
ping strategy, which only retraining pruned model for a few
epochs. Because we can distinguish the performance of a
candidate NPS scheme by comparing the relative accuracy
to other NPS schemes.

Moreover, we overlap the compiler optimization process
with the accuracy evaluation process to further accelerate the
overall evaluation process. We use compiler code generation
and actual on-device latency measurement because of (i)
higher accuracy than per-layer latency modeling due to layer
fusion mechanism, and (ii) the fast auto-tuning capability
of compiler to different mobile devices. Please note that the
compiler code generation and latency measurement do not
need the absolute weight values. Compiler code generation
is much faster than DNN training (even a single epoch), and
can be performed in parallel with accuracy evaluation (as
accurate weight values are not needed). As a result, it will
not incur extra time consumption to NPS.

3 COMPILER DESIGN AND
OPTIMIZATIONS

Another source of acceleration to achieve real-time in-
ference on mobile devices is the compiler optimizations
for generating efficient execution codes. We develop a
comprehensive,compiler-based automatic code generation
method with multiple optimizations.

Support for Various Pruning Schemes: We design a do-
main specific language (DSL) to represent the DNN model,
and a layer-wise representation (LR) is used to describe each
DNN layer. This provide us the flexibility for supporting the
layer-wise pruning scheme selection. We also design com-
pact weight storage formats for different pruning schemes
to improve the data locality.

Layer Fusion Mechanism: We incorporate a layer fusion
technique to fuse the computation operators in computation
graph and effectively reduce the inference latency. Our
fusion based on two kinds of properties in the polynomial
calculation: computation laws (i.e., associative property,
commutative property, and distributive property) and data
access patterns. As a result, we reduce not only the memory
consumption of intermediate results, but also the number of
operators.

Auto-tuning for Different Mobile CPU/GPU: To find the
best-suited performance-critical tuning parameters, such as
the data placement on GPU memory, matrix tiling sizes,
loop unrolling factors, we use auto-tuning approaches as
other DNN inference frameworks like TVM. And we incor-
porate Genetic Algorithm to explore the best configuration
automatically and efficiently.

Compiler-aware Latency: The latency of a given candi-
date model is hard to be accurately estimated based on a
layer-wise latency model when compiler optimizations are
incorporated, especially with layer fusion and auto-tuning.
Thus, during the search process, we use real-world compiler
optimized latency measured on the real device instead of
building a layer-wise latency model. Since the code genera-
tion time of our optimized compiler design is much shorter
than the accuracy evaluation process, we overlap the code
generation and latency measurement with the accuracy eval-
uation process, hence no extra time cost will be incurred.

Table 1. Mobile CPU/GPU Inference latency (ms) comparison
with MNN, TVM, and TFLite using dense (unpruned) models.
Representative networks (VGG-16, ResNet-18, MobileNet-V2)
are evaluated.

Framework VGG-16 ResNet-18 MobileNet-V2
TFLite 429 / 307 108 / 49.9 55.2 / 24.3
TVM 251 / 221 61.5 / 37.6 23.1 / 20.5
MNN 239 / 141 52.4 / 23.7 18.6 / 14.5

Ours (dense) 204 / 103 41.1 / 19.8 17.4 / 9.3
Ours (sparse) 37.3 / 18.1 20.6 / 9.7 9.2 / 4.3

Comparison with Representative DNN Inference Accel-
eration Frameworks on Mobile Device: To demonstrate
the generality and the superiority of our compiler opti-
mizations, we compared the inference latency of both
dense model and sparse model with other representative
DNN inference acceleration frameworks including TFLite,
TVM, and MNN. And we show the results on widely used
benchmark networks including VGG-16, ResNet-18 and
MobileNet-V2. Tests are conducted on a Samsung Galaxy
S10 smartphone with mobile CPU and mobile GPU respec-
tively. As shown in Table 1, only based on our compiler
optimization (without pruning), our results clearly outper-
forms the representative frameworks on both mobile CPU
and mobile GPU. By incorporating our network pruning



A Compiler-aware Framework of Network Pruning Search Achieving Beyond Real-Time Mobile Acceleration

search (without causing accuracy loss), the inference la-
tency is further reduced. The pruning rate for VGG-16,
ResNet-18, and MobileNet-V2 is 8.2×, 5.3×, and 1.8×,
respectively.

4 RESULTS AND EVALUATION

4.1 Experimental Setup

We use the image classification task and ImageNet dataset
to show the effectiveness of our framework, as in Fig. 3 and
4. We compare our accuracy and latency results with repre-
sentative DNN inference acceleration frameworks including
MNN, PyTorch Mobile, and TFLite. The results are tested
on a Samsung Galaxy S20 smartphone using a Qualcomm
Snapdragon 865 Octa-core mobile CPU and a Qualcomm
Adreno 650 mobile GPU.

For Phase 1, we conduct a fast fine-tuning with 5 train-
ing epochs after replacing the mobile-unfriendly operations
(only once for the entire NPS process). In Phase 2, 40 Nvidia
Titan RTX GPUs are used to conduct the fast accuracy eval-
uation for candidate NPS schemes concurrently. Since we
start from a well-trained model, we retrain 2 epochs for each
candidate one-shot pruned model for fast evaluation. For
each candidate model, we measure 100 runs of inference on
target mobile devices and use the average value as end-to-
end latency. Thanks to our fast evaluation and BO, using
EfficientNet-B0 as starting point, the overall searching time
is 15 days, where Phase 1 only takes 5 epochs, and Phase 3
takes 1.5 days.

Table 2. Comparison results of NPS and representative lightweight
networks: MobileNet-V1 (Howard et al., 2017), MobileNet-V2
(Sandler et al., 2018), MobileNet-V3 (Howard et al., 2019), NAS-
Net-A (Zoph et al., 2018), AmoebaNet-A (Real et al., 2019),
MnasNet-A1 (Tan et al., 2019), ProxylessNas-R (Cai et al., 2018).

MACs Acc.
top-1

Latency (ms)
CPU/GPU Device

MobileNet-V1 575M 70.6 - / - -
MobileNet-V2 300M 72.0 - / - -
MobileNet-V3 227M 75.2 - / - -

NAS-Net-A 564M 74.0 183 / NA Google Pixel 1
AmoebaNet-A 555M 74.5 190 / NA Google Pixel 1
MnasNet-A1 312M 75.2 78 / NA Google Pixel 1

ProxylessNas-R NA 74.6 78 / NA Google Pixel 1
NPS (ours) 290M 77.0 11.8 / 6.7 Galaxy S20
NPS (ours) 201M 75.0 9.8 / 5.9 Galaxy S20
NPS (ours) 147M 70.9 6.9 / 3.9 Galaxy S20
NPS (ours) 98M 68.3 5.6 / 3.3 Galaxy S20

4.2 Evaluation Results

First, our compiler optimizations can effectively speed up in-
ference by up to 46% and 141% (on MobileNet-V3) without
incorporating NPS compared to the currently best frame-

To
p-

1 
A

cc
ur

ac
y 

(%
)

Mobile GPU Latency (ms)
3     4     5    6     7     8     9    10   11   12   13   14  15   16   

80

79

78

77

76

75

74

73

72

71

70

69

68

MobileNet-V3:
 MNN
  TF-Lite
 Our Compiler
EfficientNet-B0 :
 MNN
  TF-Lite (24 ms)
 Our Compiler
EfficientNet-B0 (x0.7) :
 MNN
   TF-Lite
 Our Compiler
EfficientNet-B0 (x0.5) :
 MNN
 TF-Lite 
 Our Compiler

 NPS (Ours)

(7.4, 71.5) (12.1, 71.5)

(7.9, 75.2)

(16.0, 75.2)
(11.0, 77.1) (13.7, 77.1)

 (6.7, 77.0)
(MACs=290M)

(5.9, 75.0)
(MACs=201M)

(MACs=147M)

(MACs=99M)

(9.6, 68.1) (14.1 68.1)(6.1, 68.1)

(3.9, 70.9)

(3.3, 68.3 )

(19.0, 75.2)

(18.0, 71.5)

17   18   19 

Figure 3. Accuracy vs. Latency comparison on mobile GPU.
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Figure 4. Accuracy vs. Latency comparison on mobile CPU.

work MNN on mobile CPU and GPU, respectively. With
the highest accuracy (77.0% Top-1), the end-to-end infer-
ence time of NPS solution (290M MACs) is only 11.8ms
and 6.7ms on mobile CPU and GPU, respectively. With
MobileNet-V3 level accuracy (75% Top-1), our inference
time (201M MACs) is 9.8ms and 5.9ms. With MobileNet-
V2 level accuracy (71% Top-1), the inference time of NPS
solution (147M MACs) is 6.9ms and 3.9ms. To the best of
our knowledge, this is never accomplished by any existing
NAS or weight pruning work. Detailed results can be found
in Table 2.

5 CONCLUSION

In this work, we propose (i) a fine-grained structured prun-
ing applicable to various DNN layers, and (ii) a compiler
automatic code generation framework supporting different
DNNs and different pruning schemes, which bridge the gap
of model compression and NAS. We further propose NPS, a
compiler-aware unified network pruning search, and several
techniques are used to accelerate the searching process.
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