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OUTLINE

• What is the brain-computer interface?

• Research goal

• Previously developed wearable BCI device

• Proposed target identification algorithm

• Experimental results

• Further work – make our own hardware

• Conclusion
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BRAIN-COMPUTER INTERFACE

• Brain-Computer Interface (BCI) - emerging communication channel for humans
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BRAIN-COMPUTER INTERFACE

• Brain-Computer Interface (BCI) - emerging communication channel for humans

5

Lyon Neuroscience Research Center

• Can help patients with paralysis 
communicate with other people
(stroke, spinal cord injury, …)

BCI Speller

• Using non-invasive 
electroencephalogram (EEG)
à non-invasiveness, simple operation

Graffiti artist, Tempt Physicist, Hawking



STEADY-STATE VISUAL EVOKED POTENTIAL

• Information transfer through visual evoked potentials (VEPs)

• SSVEP: EEG response to flickering visual stimulation at a specific frequency
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VISUAL TARGET IDENTIFICATION IN BCI SPELLER

• Information transfer through visual evoked potentials (VEPs)

• SSVEP: EEG response to flickering visual stimulation at a specific frequency
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RESEARCH GOAL
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• Attaching many electrodes on the head

• Discomfort to wear

• Long preparation/setup time

• EEG signal processing in PC

• Need powerful computing resource

Previous BCI speller system

§ BCI device with better wearability 

§ Support on-device EEG processing

– Based on Low-power MCU platform

§ Display device with
– Target character display : visual stimulus
– On-line speller : Identified target display 

– e.g. Tablet with BLE

Wearable BCI speller system

Goal : Wearable BCI speller systemPrevious BCI speller system



WEARABLE BCI DEVICE PROTOTYPE

• Behind-the-ear type device

• Single-channel EEG + Bluetooth 4.0

• Target identification software on host PC (EEG data transfer through Bluetooth)

• 24-bit resolution ADC chip (for performance evaluation)
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COMPARISONTO COMMERCIAL DEVICES
• Small size & low power

• Comfortable

• Long battery life

• High performance
• Low noise

• High resolution

• But…
• Requires powerful 

computing PC
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IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

• Not Enough SNR:   Poor SSVEP quality at behind-the-ear position

• Not Enough Computing Power:   Requires external computing device

• Not Enough Communication Speed
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IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

• Not Enough SNR:   Poor SSVEP quality at behind-the-ear position

• Move the electrode to back of the head (occipital region, Oz)

• Not Enough Computing Power:   Requires external computing device

• Propose the target identification algorithm for low-cost MCU and small memory

• Maintain the BCI speller performance with negligible accuracy loss

• Not Enough Communication Speed

• Reduce the signal processing time especially the timing dependent procedures
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TARGET IDENTIFICATIONALGORITHMS

• PSDA (Power Spectral Density Analysis)

• For single-channel SSVEP target identification

• Simple operation: FFT & find maximum index

• Weak performance for low SNR (signal-to-noise) SSVEP signal
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TARGET IDENTIFICATIONALGORITHMS

• Standard-CCA (Canonical Correlation Analysis)*

• Correlation between EEG signal X and reference sinusoidal signal Y for each frequency

• Should be computed for each target frequency à Maximum correlation: target
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* Z. Lin et al, “Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs”, IEEE TBME, 2007
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TARGET IDENTIFICATIONALGORITHMS

• Combination-CCA (Comb-CCA)*
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* M. Nakanishi et al, “A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials”, PLoS ONE, 2015

• User-specific target identification
using training data à more accurate!

• Uses three datasets

• !: Input SSVEP signal set

• "!: Training signal set (average of SSVEP)

• #: Reference sinusoidal signal set

• 3 CCA calculations & 4 correlations
à huge computational complexity



TARGET IDENTIFICATION COMPARISON

• Performance evaluation in terms of 
accuracy, processing time, and ITR 
(information transfer rate)

• Comb-CCA was chosen for the 
baseline algorithm in this research
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Algorithm Performance Complexity

Comb-CCA High High

Standard-CCA Medium Medium

PSDA Low Low

(a) (b)

(c)

Standard-CCA
Comb-CCA

PSDA

Performance comparison of target identification algorithms 
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)

• P:  classification accuracy

• T:  average time for selection

• Nf:  number of targets

(a) (b)

(c)

Standard-CCA
Comb-CCA

PSDA
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PROPOSED ALGORITHM: CCA-LITE

• Optimization method #1:  Signal Binarization

• Comb-CCA with multi-bit EEG & reference signal à High computational complexity / memory

• Comb-CCA with signal binarization à Low computational complexity w/ negligible accuracy loss
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Proposed signal binarization concept for  (a) EEG signal,  (b) Reference sinusoidal signal

(a) (b)

Low memory requirement

Original SSVEP Binarized SSVEP Original SSVEP Binarized SSVEP



PROPOSED ALGORITHM: CCA-LITE

• Optimization method #2:  On-the-fly Covariance

• !"# $, & = ( $ − ( $ & − ( & = ( $& − ( $ ( &

21



PROPOSED ALGORITHM: CCA-LITE
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• In our application, ( $& more bigger than ( $ ( &
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PROPOSED ALGORITHM: CCA-LITE

• Optimization method #2:  On-the-fly Covariance

• !"# $, & = ( $ − ( $ & − ( & = ( $& − ( $ ( & ≈ ( $&
• If ( $& ≫ ( $ ([&] then ( $ ([&] can be ignored

• In our application, ( $& more bigger than ( $ ( &
• Covariance matrix calculation can be performed

simultaneously with SSVEP recording
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Comparison of E[XY] and E[X]E[Y]Advantage from On-the-fly Covariance Calculation
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EXPERIMENTAL ENVIRONMENTS

• Low-power MCU platform

• STM32F103ZET6 ARM MCU

• ARM Cortex-M3 (Operating Frequency : 72MHz)

• 512KB flash memory, 64KB SRAM 

• Dataset Description *
• EEG acquisition using Biosemi’s ActiveTwo

• ADC : 24-bit resolution

• Sampling Frequency : 256Hz

• Number of channel : 8 channels (We used Oz)

• Recording Time : 4s

• # of Target, # of subjects : 12 targets, 10 subjects

24
* M. Nakanishi et al, “A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting State-State Visual Evoked Potentials”, PLoS ONE, 2015

STM32F103ZET6 board

Analog
Front-End

Zero-Phase
IIR filter

Filtered value

Pre-processing before writing the data file



EXPERIMENTAL RESULTS

• Power spectrum of training signal according to the SSVEP recording length
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• Subject #4

• Target: 9.25Hz

freq. diff. = 0.25Hz

freq. diff. = 1Hz

freq. diff. = 0Hz freq. diff. = 0Hz

freq. diff. = 0.5Hz freq. diff. = 0.25Hz
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EXPERIMENTAL RESULTS

• Power spectrum of training signal according to the SSVEP recording length
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• Subject #4

• Target: 9.25Hz

freq. diff. = 0.25Hz

freq. diff. = 1Hz

freq. diff. = 0Hz freq. diff. = 0Hz

freq. diff. = 0.5Hz freq. diff. = 0.25Hz

Comb-CCA CCA-Light
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Moderate
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EXPERIMENTAL RESULTS

• Accuracy performance according to the combination of binarization application

Type Measured 
EEG

Training 
EEG

Reference 
Sinusoidal

Conv. X X X

Type1 X X O

Type2 X O X

Type3 X O O

Type4 O X X

Type5 O X O

Type6 O O X

Type7 O O O

O: Signal binarization was applied
X: Signal binarization was not applied

Signal binarization applied Comb-CCA

Type3:  High accuracy with small memory requirement

-- Training & Reference : pre-stored data



EXPERIMENTAL RESULTS

• Accuracy performance for various target identification algorithms

• CCA-Lite :  Comb-CCA + Signal Binarization (for Train & Ref.) + on-the-fly Covariance
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Negligible
Accuracy Loss

CCA-Lite
Comb-CCA
Standard-CCA
PSDA

: 85.39%
: 86.06%
: 58.67%
: 48.39%

Accuracy at 1.5s

CCA-Lite
Comb-CCA
Standard-CCA
PSDA



EXPERIMENTAL RESULTS

• Performance of target selection time & ITR (Information Transfer Rate)

• Tested on Cortex-M3 based STM board (operating frequency: 72MHz)
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23% improved

93% reduced

CCA-Lite Comb-CCA Standard-CCA PSDA



EXPERIMENTAL RESULTS

• CCA-Lite software performance evaluation on Cortex-M3

• M1:  Signal binarization applied Comb-CCA  /  M2:  on-the-fly covariance applied Comb-CCA

• M1+M2:  proposed CCA-Lite
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Memory footprint Pure signal processing time on Cortex-M3 
for single target identification

92% reduced

47% reduced

Phase 1: three CCA processing in CCA-Lite
Phase 2: four correlation processing in CCA-Lite

M1M2 M1M2



EXPERIMENTAL RESULTS

• Overall BCI speller system performance in terms of communication speed 
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1) X. Chen et al, “High-speed spelling with a noninvasive brain-computer interface”, PNAS, 2015
2) M. Nakanishi et al, “Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis”, IEEE TBME, 2018

• Fixed target gazing time: 1.5s

• Minimum gaze shift time:  0.5s 1,2)

• Single target identification time

• 22% reduced !

• Guaranteed gaze shift time 0.5s
(signal processing will be done 
before the end of gaze shift time)

0.5s

Comb-CCA

CCA-Lite



REUSABLE MATRIXARITHMETICARCHITECTURE
• SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD

8 electrodes

Wire
SoCBattery

12-Target Display
Training

Real-Time
Target

Identification

Wireless
Comm.

Testing

Occipital
Region

wearable system

• CCA finds the weights Wx, Wy which gives the 
largest correlation between X and Y
(target frequency identification)

• We use CCA-Lite consisting of three CCAs.

• Requires QRD, Inverse, Covariance, Mult. …

CCA: Canonical Correlation AnalysisXiaogang Chen, PNAS, 2015

Xiaorong Gao, 2011

Conventional
high-cost system



REUSABLE MATRIXARITHMETICARCHITECTURE
• SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD

• Systolic architecture based QR decomposition engine
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• Same hardware, different operations à high reusability
(covariance, mult, QRD, inversion, …)

• “High throughput, reduced area & memory access, reduced 
power consumption” compared to same operations

• Target frequency identification on the low-cost edge devices. 

• System implementation w/ AFE & Wireless Comm.

Cortex-M3
DesignStart

Optionally single chip



CONCLUSION

• Research for patients with paralysis
• Low-cost wearable BCI system

• Propose CCA-Lite for low-complexity target identification
• Target selection time reduction : 93% 

• ITR (Information Transfer Rate) improvement : 23%

• Total performance improvement (for single target identification time) : 22%

• Further work - support multi-ch EEG processing for better accuracy
• SoC (System-on-chip) design with AFE (Analog Frontend) + dedicated hardware accelerator
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