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FedSGD Method

For t=1,2,…
random devices, 𝑆𝑆 ⊆ 𝑚𝑚 and server interact

server transmits current model, 𝜃𝜃0
clients 𝑘𝑘 ∈ 𝑆𝑆 update
Model update:

server receives models and updates:
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Vanilla ``SGD’’ Approach

For t=1,2,…
active devices at time t update cloud model (one gradient step)

server merges active devices:

Device 1 Device 2

Device 3

Optimal
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Fed Avg Approach (FedProx = FedAvg + quadratic reg)

For t=1,2,…
active devices perform many gradient steps starting with cloud model

set 

for i=1,2,…K, do for each active device k:

server merges active devices:

minimize
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minimize Steps in Biased direction  

Biased direction cancelled
Correct direction substituted 

debias
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minimize

Last Tx 
device model



minimize

Devices Tx update 

Server Tx

Device Optima

Linear Eqn

Server can update locally!!
Diff  in grad = diff  in models
(without needing gradient Tx)
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Dynamic Regularization Approach

For t=1,2,…
Server: 

Rx: model from active devices: 𝜃𝜃𝑘𝑘
updates state locally:

Model update: 

Tx:

Models: Update model by optimizing dynamic loss
Update local state (gradient).

Does it work? Overcome source bias and converge? Yes!
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Method
Partial 

Participation
Communication 

per Round
Heterogeneity 
Assumption

Device 
Optimization

Extra States

Ours (DyDFL) Yes Once Arbitrary Exact/SGD Local and server

FedAvg Yes Once
Bounded 
Gradients

SGD Steps No

FedProx Yes Once
Bounded 
Gradients

SGD Steps No

SCAFFOLD Yes 2X Arbitrary SGD Steps Local and server

FedSplit, FSVRG
FedPD, DANE

No - - - -

FedAvg: McMahan AISTATS 2017.
FEDPROX: Li,  MLSys 2020, 2020a.
SCAFFOLD: Karimireddy ICML 2020.
Fedsplit: Pathak R  NueRIPS 2020.
FSVRG: Konečný arXiv, 2016.
FEDPD: Zhang  arXiv,  2020.
DANE Shamir O, ICML 2014
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Dirichlet: 3 classes

Class 1

Class 2

Class 3



100 Devices, 10% activation, IID, @82.3% Accuracy

Method Com. Cost Gain # Rounds

Ours (DyDFL) 240

SCAFFOLD 512 2.1X

FedAvg 994 4.1X

FedProx 825 3.4X

100 Devices, 10% activation, non IID, @80.7%

Method Com. Cost Gain # Rounds

Ours (DyDFL) 232

SCAFFOLD 594 2.6X

FedAvg 863 3.7X

FedProx 930 4.0X

Key Insights: 10% activity level
DyDFL is agnostic to data heterogeneity. 
Achieves fully centralized accuracy (85%)
DyDFL outperforms state-of-art
Similar results for other datasets

No Loss due to privacy



1000 Devices, 10% activation, non IID, @70.6% acc

Method Com. Cost Gain

Ours 350

SCAFFOLD 2138 6.1X

FedAvg 1962 5.6X

FedProx 1517 4.3X

Our method leads to high savings when scaled to more devices, partial participation, and data heterogeneity.

CIFAR100 500 Devices, 10% activation, non IID, @40%

Method Com. Cost Gain

Ours 467

SCAFFOLD 2266 4.9X

FedAvg 1913 4.1X

FedProx 1794 3.8X

Ours
CIFAR-10 CIFAR-100



CIFAR - 100
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CIFAR - 100
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Device dependent tranformation
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Dynamic Regularization Approach

For t=1,2,…
Server: 

Rx: model 𝜃𝜃𝑘𝑘 from active devices in S:
updates state locally:

Model update: 

Tx:

Models: Update model with (PDLk) 
Update local state (gradient).

Device dependent posterior
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[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing 
Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Sparse with correct class association @91.6% Test Acc.

Method Rounds Gain

Ours (metric) 152

Ours (fine-tuning) 242 1.6X

FedAvg (metric) 334 2.2X

[a,b] (fine-tuning) 815 5.4X

Sparse Random Class indices/device @87.9% Test Acc. 

Method Rounds Gain

Ours (metric) 73

Ours (fine-tuning) 323 4.4X

FedAvg (metric) 95 1.3X

[a,b] (fine-tuning) 792 10.8X

Ours (metric) has consistently high savings.

Metric adaptation is robust to label permutation.

Ours is better than vanilla FedAvg achieving SOTA.
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[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing 
Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.

Sparse with correct class association @79% accuracy

Method Rounds Gain

Ours (Metric) 211

Ours (fine-tuning) 482 2.3X

FedAvg (metric) 512 2.4X

[a,b] fine-tuning 312 1.5X

Sparse Randomly Permuted Class indices @69%

Method Rounds Gain

Ours (Metric) 100

Ours (fine-tuning) 250 2.5X

FedAvg (metric) 166 1.7X

[a,b] (fine-tuning) 710 7.1X

Ours with metric based adaptation leads to high savings.

Metric based adaptation is robust to label permutation.

Our (metric or fine-tuning) improves the lowest level personalization.
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CIFAR100, Sparse with Correct Class Association

Test Average Personalization 89.1%

Method Com. Cost Gain

Ours (metric) 133

Ours (fine-tuning) 255 1.9X

FedAvg (metric) 383 2.9X

[a,b] (fine-tuning) 961 7.2X

CIFAR100, Sparse with Randomly Permuted Class Indices

Test Average Personalization 89.5%

Method Com. Cost Gain

Ours (metric) 156

Ours (fine-tuning) 849 5.4X

FedAvg (metric) 390 2.5X

[a,b] (fine-tuning) >1000 >6.4X

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing 
Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.
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CIFAR100, Sparse with Correct Class Association

Test Lowest Personalization 75.0%

Method Com. Cost Gain

Ours (metric) 254

Ours (fine-tuning) 949 3.7X

FedAvg (metric) 714 2.8X

[a,b] (fine-tuning) >1000 >3.9X

CIFAR100, Sparse with Random Class Association

Test Lowest Personalization 73.0%

Method Com. Cost Gain

Ours (metric) 192

Ours (fine-tuning) 721 3.8X

FedAvg (metric) 692 3.6X

[a,b] (fine-tuning) >1000 >5.2X

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing 
Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.
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