

Customizing Federated Learning to the Edge

Venkatesh Saligrama

Boston University

MLSys Workshop, April 2021

Project Team

Acar et.al. ICLR 2021, <u>Federated Learning Based on Dynamic Regularization</u> Acar et.al. ICML 2021, <u>Personalized Federated Learning Based on Debiasing</u>

Alp Acar¹

Yue Zhao²

Ruizhao Zhu¹

Matthew Mattina²

Paul N. Whatmough²

¹Boston University ²Arm ML Research Lab

Outline

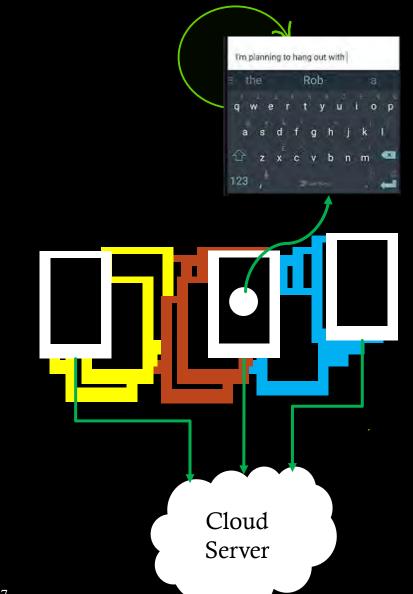
BOSTON UNIVERSITY

- Vanilla Federated Learning
 - ♦ Concept and Challenges
 - ♦ Device Debiasing Algorithm
 - ♦ Analysis and experiments
- Personalizing to Edge Device
 - ♦ Concept & Challenges
 - Application of Debiasing Scheme
 - ♦ Analysis and Experiments
- Customizing to Device Capacity: Challenges

BOSTON UNIVERSITY

Federated Learning

- ♦ Millions of Devices with local models in the System
 - ♦ Device SMS = Local Data Collection
 - Private not shared
 - Device model offers local suggestions
 - Receives user feedback locally, updates local model
 - ♦ Local model updated over many SMS data (messages).
- Cloud Server
 - ♦ Different Devices transmit model update *sporadically*
 - ♦ Server fuses received models within a small time-window
 - ♦ Transmits to currently active devices
- Active Devices perform model updates



[1] McMahan, H B "Federated Learning: Collaborative Machine Learning without Centralized Training Data." Google AI Blog, 6 Apr. 2017.

Federated System Constraints

airplane

bird

cat

deer

doa

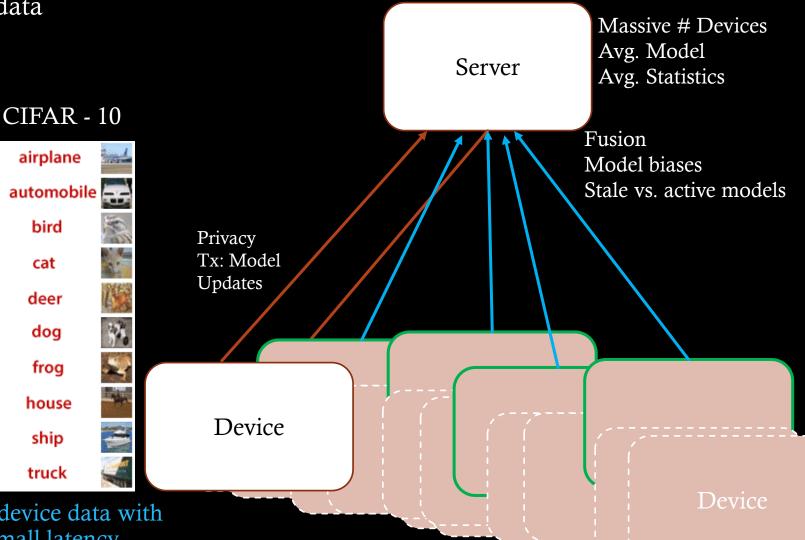
frog

house

ship

truck

- Privacy vs. Need for lots of training data \otimes
 - ♦ Device shares only model updates
 - ♦ How to balance privacy vs. data?
- Massive # devices. \diamond
 - ♦ Sporadic device updates
- Device Data Variability. \otimes
 - Users have diverse interests/activity \diamond
- Device Capacity Variability \otimes
 - ♦ Samsung S21 Ultra vs. Galaxy A10
- Goals: \otimes
 - ♦ Accuracy matching training with all device data with minimal cloud/server Tx/RX, and small latency.



Three Problems

- How to training global models matching accuracy of centrally trained (data-shared) models
 while minimizing communication rounds and bits transmitted?
 - ♦ Sporadic device activity, and device data variability (profile and size)
- ♦ How to train models on the cloud that can be rapidly personalized to user-specific tasks?

- ♦ How to train customized models to meet device capacity specifications?
- ♦ Our Solution: Local Debiased Training + Server Model Merging.

Vanilla Federated Learning

Minimize Global Average Loss (m: # Devices, D_k Device k data)

 $\operatorname{Loss}(\theta) = \frac{1}{N} \sum_{k=1}^{m} \sum_{i \in D_k} \operatorname{Loss}(\theta; x_i, y_i)$

♦ Local Empirical Loss (available to device k):

$$L_k(\theta; D_k) = \frac{1}{N_k} \sum_{i \in D_k} \text{Loss}(\theta; x_i, y_i)$$

- Challenges
 - ♦ Privacy: Device Data not shared.
 - ♦ Heterogeneity: imbalanced datasets, not all classes/device
 - ♦ Activation: only few among millions of devices.

FedSGD Method For t=1,2,...

> random devices, $S \subseteq [m]$ and server interact server transmits current model, θ_0 clients $k \in S$ update Model update:

$$\theta_k \leftarrow \theta_0 - \eta \nabla L_k(\theta_0; D_k)$$

server receives models and updates:

$$\theta_0 \leftarrow \frac{1}{|S|} \sum_{k \in S} \theta_k$$

FedSGD: High Latency

 $\, \diamond \,$ Number of Rounds (Latency) for target error δ

- $T = O(\frac{1}{\delta^2})$
- ♦ Scales inversely with # active clients
- ♦ Convergence is slow,
 - ♦ # Communication rounds and latency is high

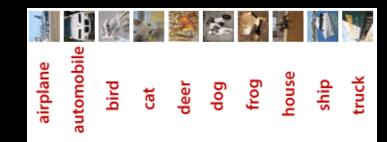
Vanilla ``SGD'' Approach

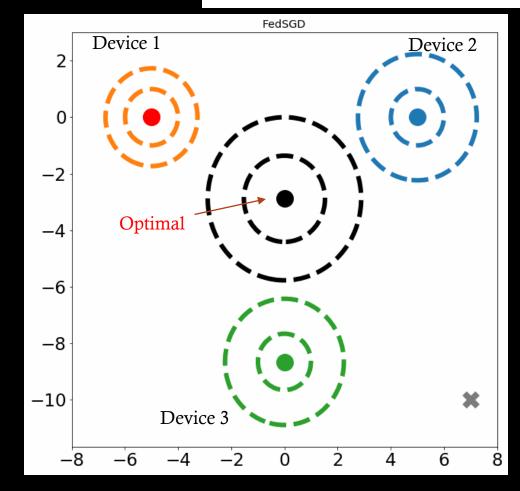
For t=1,2,...

active devices at time t update cloud model (one gradient step) $\theta_k \leftarrow \theta_0 - \eta \nabla L_k(\theta_0; D_k)$

server merges active devices:

$$\theta_0 \leftarrow \frac{1}{|S|} \sum_{k \in S} \theta_k$$





Federated Averaging and FedProx

- ♦ Let device do some of the ``heavy lifting,'' by taking more gradient steps (optimize local loss more)
 - ♦ Goal: fewer comms, and low latency.
- Sexhibits poor convergence even in convex cases
 - ♦ Sporadic activation & data heterogeneity.
- ♦ Dilemma: more # grad steps Bias; few grad: large latency.
 - ♦ Introduces #gradient steps as a hyperparameter.

Fed Avg Approach (FedProx = FedAvg + quadratic reg)

For t=1,2,...

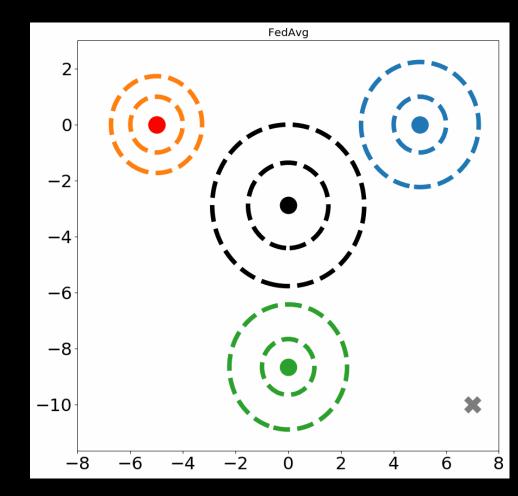
active devices perform many gradient steps starting with cloud model set $\theta' \leftarrow \theta_0$

for i=1,2,...K, do for each active device k:

$$\begin{array}{c|c} \theta_k \leftarrow \theta' - \eta \nabla L_k(\theta'; D_k) \\ \theta' \leftarrow \theta_k \end{array} \quad \int L_k(\theta) + \frac{\alpha}{2} \|\theta - \theta_0\|^2$$

server merges active devices:

$$\theta_0 \leftarrow \frac{1}{|S|} \sum_{k \in S} \theta_k$$



Proposed Scheme: Debiasing Device Model

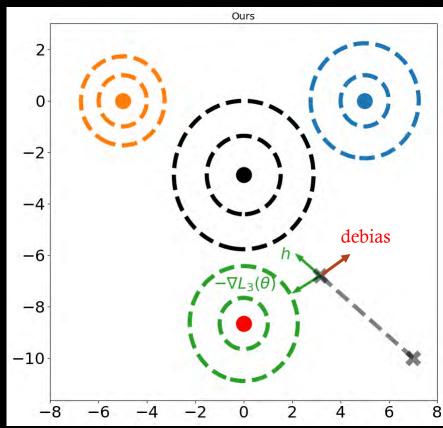
- De-biasing local updates to device dataset
 - ♦ Goal: fewer comms, and low latency.
 - ♦ FedAvg/FedProx:

 $\therefore \frac{\min(2)}{L_k(\theta) + \frac{\alpha}{2} \|\theta - \theta_0\|}$

Steps in Biased direction $-\nabla L_k(\theta_0)$

- ♦ Suppose, oracle provides the correct direction, $h := -\frac{1}{m} \sum_{k \in [m]} \nabla L_k(\theta_0)$ ♦ This is the global gradient (want it to be zero)!!
 - ♦ Fake Device Loss: $L_k(\theta) \langle \nabla L_k(\theta_0), \theta \theta_0 \rangle + \langle h, \theta \theta_0 \rangle + \frac{\alpha}{2} \|\theta \theta_0\|^2$
 - ♦ subtract biased gradient, add oracle gradient?
- ♦ What is the impact?
 - ♦ First step results in: $θ_k ← θ_0 + ηh$

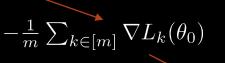
Biased direction cancelled Correct direction substituted



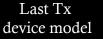
Debiasing Device Model Update: All active

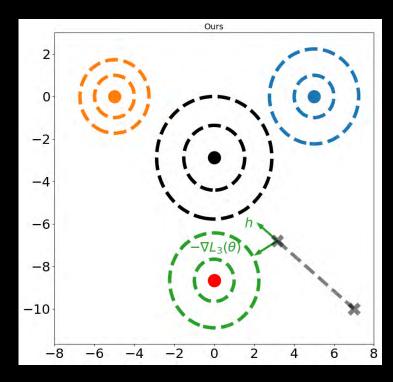
 $\text{ \ \ Fake Obj: } \begin{array}{c} \underset{L_k(\theta) - \langle \nabla L_k(\theta_0), \theta - \theta_0 \rangle + \langle h, \theta - \theta_0 \rangle + \frac{\alpha}{2} \| \theta - \theta_0 \|^2 \\ \end{array}$

- ♦ Correct direction unavailable
 - ♦ Server has only local models
 - ♦ Loss functions are private
 - ♦ Sporadic comm activity
 - ♦ Server cannot sync all devices
- ♦ Leverage the last Tx device model
 - ♦ Available at cloud server
 - ♦ How to circumvent gradient Tx?



$$h' := -\frac{1}{m} \sum_{k \in [m]} \nabla L_k(\theta_k)$$



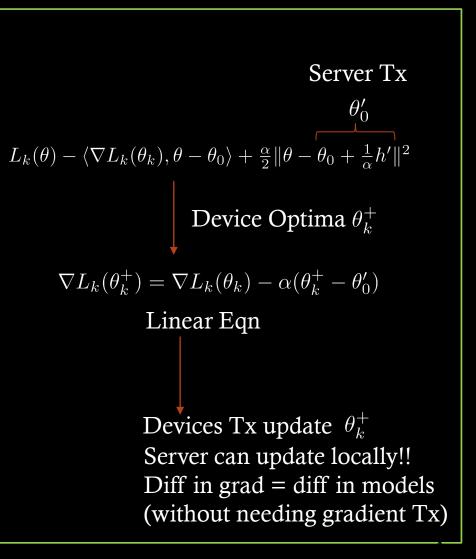


Debiasing Device Model Update

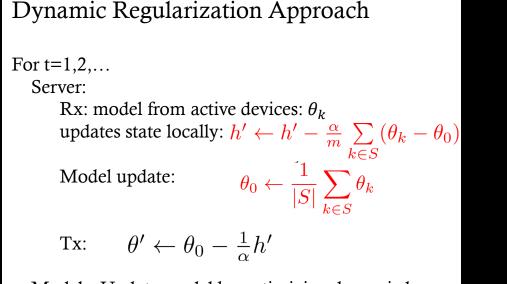
Proposal: Device optimizes

 $\begin{array}{l} \text{minimize} \\ L_k(\theta) - \langle \nabla L_k(\theta_k), \theta - \theta_0 \rangle + \langle \boldsymbol{h'}, \theta - \theta_0 \rangle + \frac{\alpha}{2} \| \theta - \theta_0 \|^2 \\ h' = -\frac{1}{m} \sum_{k \in [m]} \nabla L_k(\theta_k) \end{array}$

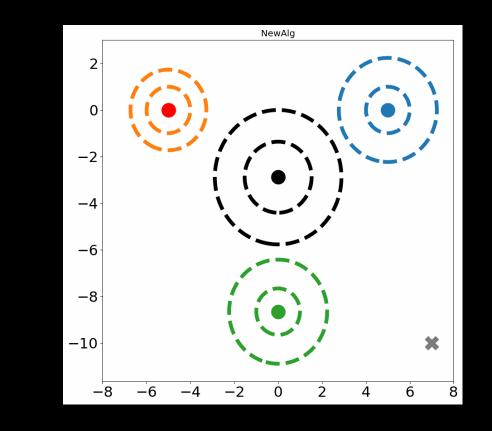
- ♦ Device Tx Updated model
 - ♦ How does device compute avg approximate gradient?
 - ♦ It does not have to!
- ♦ Server
 - ♦ How should server update?
 - ♦ What should server Tx?
 - Model average plus approx. grad!



Dynamic Debiasing Federated Learning (DyDFL) with Sporadic activation



Models: Update model by optimizing dynamic loss Update local state (gradient).



Does it work? Overcome source bias and converge? Yes!

Analysis of DyDFL

Convex Case Case Convex Case

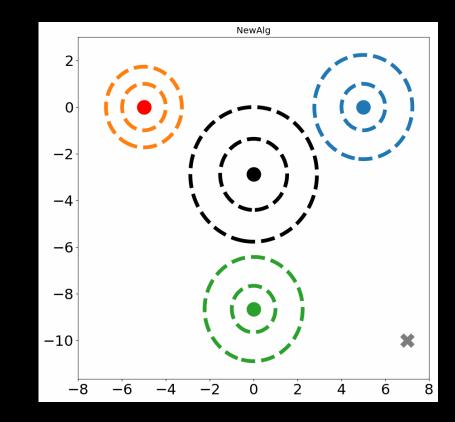
 $\diamond~$ Number of Rounds (Latency) for target error $\delta~$

 $T = O(\sqrt{\frac{m}{S}}\frac{1}{\delta})$

- ♦ Rapid Convergence and Low Latency
- Dependence on active participation is ``optimal''
- ♦ FedSGD: $T = O(\frac{1}{\delta^2})$
 - ♦ Slow and high latency.
- Non-Convex: # rounds for reaching stationary point

 $T = O(\frac{m}{S}\frac{1}{\delta})$

- ♦ State-of-art over prior works
- ♦ Bits communicated is same as FedAvg/round (cost: extra local state).
- Minimal hyperparameter tuning



Theory & Comparison to Prior Schemes

Method	Partial Participation	Communication per Round	Heterogeneity Assumption	Device Optimization	Extra States
<u>Ours (DyDFL)</u>	Yes	Once	Arbitrary	Exact/SGD	Local and server
FedAvg	Yes	Once	Bounded Gradients	SGD Steps	No
FedProx	Yes	Once	Bounded Gradients	SGD Steps	No
SCAFFOLD	Yes	2X	Arbitrary	SGD Steps	Local and server
FedSplit, FSVRG FedPD, DANE	No	-	-	-	-

FedAvg: McMahan AISTATS 2017. FEDPROX: Li, MLSys 2020, 2020a. SCAFFOLD: Karimireddy ICML 2020. Fedsplit: Pathak R NueRIPS 2020. FSVRG: Konečný arXiv, 2016. FEDPD: Zhang arXiv, 2020. DANE Shamir O, ICML 2014

Experiment Setup

\diamond Datasets

\diamond Vision:

- * MNIST, CIFAR-10, CIFAR-100, E-MNIST
- ♦ Language:
 - Shakespeare (character prediction)

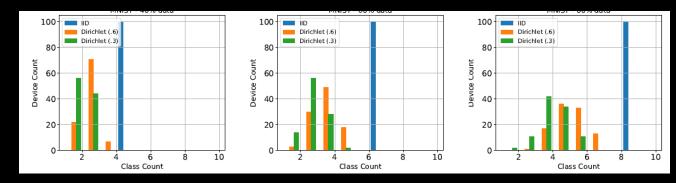
♦ Architecture

- ♦ Vision: 2 Conv layers, 2 Fully connected layers
- ♦ Language: Stacked LSTMs

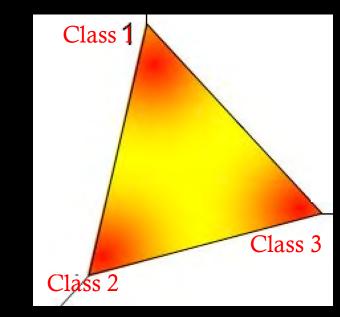
Dataset	Train Samples Amount	Test Samples Amount
CIFAR-10	50000	10000
CIFAR-100	50000	10000
MNIST	60000	10000
EMNIST-L	48000	8000
Shakespeare	200000	40000

Experiment: Evaluation Criteria

- ♦ Datasets
 - ♦ Vision:
 - ♦ MNIST, CIFAR-10, CIFAR-100, E-MNIST
 - ♦ Language:
 - Shakespeare (character prediction)
- ♦ Architecture
 - ♦ Vision: 2 Conv layers, 2 Fully connected layers
 - ♦ Language: Stacked LSTMs
- ♦ Evaluation Criteria:
 - ♦ # Comm rounds to realize target accuracy
 - Data heterogeneity (Dirichlet)
 - ♦ Scaling with # Devices
 - ♦ Different levels of activity



Dirichlet: 3 classes

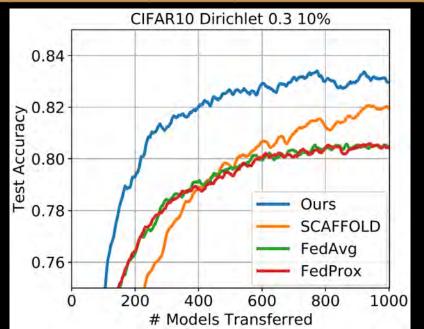


Data Heterogeneity (CIFAR-10)

100 Devices, 10% activation, IID, @82.3% Accuracy							
Method	Com. Cost	Gain	# Rounds				
Ours (DyDFL)	240		\rightarrow				
SCAFFOLD	512	2.1X					
FedAvg	994	4.1X					
FedProx	825	3.4X					

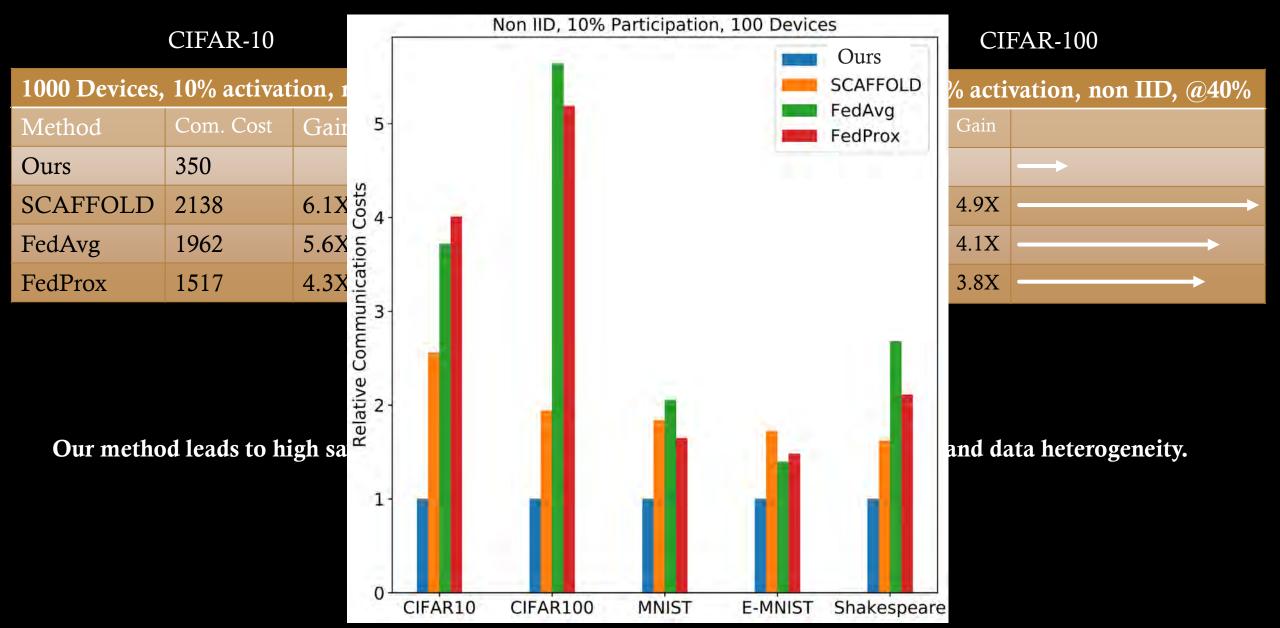
100 Devices, 10% activation, non IID, @80.7%						
Method	Com. Cost	Gain	# Rounds			
Ours (DyDFL)	232		\rightarrow			
SCAFFOLD	594	2.6X	>			
FedAvg	863	3.7X				
FedProx	930	4.0X				

Key Insights: 10% activity level DyDFL is agnostic to data heterogeneity. Achieves fully centralized accuracy (85%) No Loss due to privacy **DyDFL** outperforms state-of-art Similar results for other datasets



BOSTON UNIVERSITY

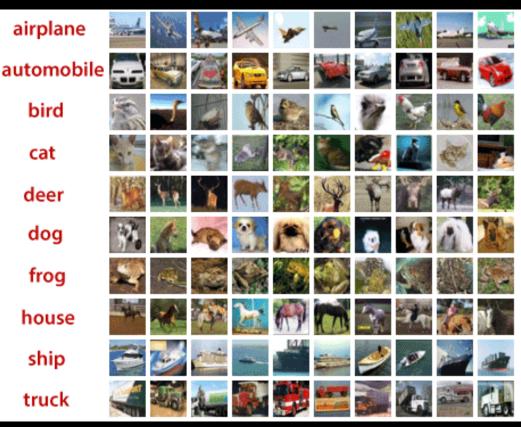
The whole works



Customizing Federated Learning to the Edge

- Objective: Average Personalization Loss (APL)
 - m Devices, kth has dataset D_k , personal objective L_k
 - ♦ Example: Device k user ~ has airplane and auto data
 - ♦ Interested in airplane type classification, but data is insufficient.
 - \diamond less interested in autos.
 - ♦ Key Challenges:
 - ♦ Global average loss no longer good objective
 - Global universal model poor performance on user objective
 - Privacy is even more important, but limited local data means interaction
 - finer-grained airplane classification requires training on larger dataset. Device has a small sample. Privacy implies we cannot do this selectively with a partial subset.

CIFAR - 100



Customizing Federated Learning to the Edge

Objective: Personalized Device Loss (PDL)

 \Leftrightarrow *m* Devices, kth has dataset D_k , personal objective PDL_k

$$PDL_k(\theta_k) = \frac{1}{N_k} \sum_{c \in C} \sum_{\substack{i \in D_k \\ y_i = c}} w_c^k \text{Loss}(\theta_k; x_i, y_i)$$

- ♦ Loss weighted by user interest
- ♦ Model across devices can be different
- ♦ Average Personalization Loss (APL):

$$APL = \frac{1}{m} \sum_{k=1}^{m} PDL_k(\theta_k)$$

CIFAR - 100

airplane	1	N.		X	*	1	3	-1		-
automobile	Ŧ				-	The second			100	*
bird	No.	ſ	4			4	17	N.	- Lo Ca	ø
cat				20		1	2	A.	(
deer	US	44	\leq	M		Y	Ŷ	1	m	
dog	37.	6	-	<u> Т</u>	1		9	X?	1	The second
frog		and the			23			ST.		4
house		-	A	\mathbf{h}	P	H TAB	15	24		N.
ship	-	Ś	<u>nii</u>		<u>.</u>	-	2	ART	1	-
truck	ALL NO.		4	ŝ.				1	0.0	dela.

How to Benefit from Federated Learning

- * Average Personalization Loss: APL = $\frac{1}{m} \sum_{k=1}^{m} PDL_k(\theta_k)$
 - PDL: device personal loss
 - Global Optimization decouples into local device minimization problems!!

- ♦ Key Idea: Common global model ~ locally adaptable
 - ♦ Rapidly Tunable Network:
 - \Leftrightarrow Learn a global model for classification, which can be further fine-tuned
 - Output State St
 - ♦ Learn a good global representation (metric) so that task predictors

Common Global Model with Rapid Fine-Tuning

APL Decouples

$$PL = \frac{1}{m} \sum_{k=1}^{m} PDL_k(\theta_k)$$

- ♦ Rapidly Tunable Network.
 - ♦ Allow small change in network weights
 - * Common model, and locally adaptable with fine-tuning T

* APL Minimization:

$$APL = \frac{1}{m} \sum_{k=1}^{m} PDL_k(T_k(\theta))$$

Device dependent tranformation

♦ Global Minimization Problem: Can plug-in our DyDFL

$$\begin{aligned} DL_k(\theta_k) &= \frac{1}{N_k} \sum_{c \in C} \sum_{i, y_i = c} w_c^k \text{Loss}(\theta_k; x_i, y_i) \\ \mathbf{g} \mathbf{T}_k &= \frac{1}{N_k} \sum_{c \in C} \sum_{i, y_i = c} w_c^k \text{Loss}(T_k(\theta); x_i, y_i) \end{aligned}$$

Common Feature Representation

* APL Decouples APL = $\frac{1}{m} \sum_{k=1}^{m} PDL_k(\theta_k)$

- ♦ Universal Representation
 - ♦ Induce a metric on feature space ([Protonet'17])
 - ♦ Can train classifier or nearest neighbor rule

- * APL Minimization: $APL = \frac{1}{m} \sum_{k=1}^{m} PDL_k(\theta)$
 - ♦ Global Minimization Problem

 $PDL_{k}(\theta) = -\frac{1}{N_{k}} \sum_{c \in C} \sum_{i} w_{c}^{k} \log(p_{k}(y_{i} = c \mid \theta(x_{i})))$ Device dependent posterior

Dynamic Regularization Approach

For t=1,2,...
Server:
Rx: model
$$\theta_k$$
 from active devices in S:
updates state locally: $h' \leftarrow h' - \frac{\alpha}{m} \sum_{k \in S} (\theta_k - \theta_0)$
Model update:
 $\theta_0 \leftarrow \frac{1}{|S|} \sum_{k \in S} \theta_k$

Tx:
$$\theta' \leftarrow \theta_0 - \frac{1}{\alpha}h'$$

Models: Update model with (PDL_k) Update local state (gradient).

Experiment Setup

- Datasets and Network
 - ♦ Vision: CIFAR-10, CIFAR-100
 - ♦ Architecture: 2 Conv layers, 2 Fully connected layers
- Evaluation Criteria: # Rounds to achieve Target Accuracy
 - ♦ APL and Lowest Personalization Loss (LPL)
 - ♦ Sparsely (k classes/device) chosen classes uniformly at random
 - ♦ Each device randomly permutes class index (PCI).
 - ♦ Class index, j, in device k does not correspond to index j in another device.
 - Example: Airplane is indexed as 1 in device 1 but may be any other number in device k
 - ♦ Enhances Privacy.

CIFAR - 10

BOSTON UNIVERSITY

CIFAR10 – Average Personalization

Sparse with correct class association @91.6% Test Acc.			Sparse Random Class indices/device @87.9% Test Acc.				
Method	Rounds	Gain		Method	Rounds	Gain	
Ours (metric)	152		\rightarrow	Ours (metric)	73		→
Ours (fine-tuning)	242	1.6X	\longrightarrow	Ours (fine-tuning)	323	4.4X	
FedAvg (metric)	334	2.2X	\longrightarrow	FedAvg (metric)	95	1.3X	→
[a,b] (fine-tuning)	815	5.4X		[a,b] (fine-tuning)	792	10.8X	

Ours (metric) has consistently high savings.

Metric adaptation is robust to label permutation.

Ours is better than vanilla FedAvg achieving SOTA.

[[]a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. *Advances in Neural Information Processing Systems*, *33*, 2020

CIFAR10 – Worst-Case Personalization Accuracy

Sparse with correct class association @79% accuracy			Sparse Randomly Permuted Class indices @69%				
Method	Rounds	Gain		Method	Rounds	Gain	
Ours (Metric)	211		\longrightarrow	Ours (Metric)	100		→
Ours (fine-tuning)	482	2.3X	>	Ours (fine-tuning)	250	2.5X	
FedAvg (metric)	512	2.4X	>	FedAvg (metric)	166	1.7X	
[a,b] fine-tuning	312	1.5X	>	[a,b] (fine-tuning)	710	7.1X	

Ours with metric based adaptation leads to high savings.

Metric based adaptation is robust to label permutation.

Our (metric or fine-tuning) improves the lowest level personalization.

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. *Advances in Neural Information Processing Systems*, *33*, 2020

CIFAR-100: Average Personalization

CIFAR100, Sparse w	ith Correct C	ociation	CIFAR100, Sparse with Randomly Permuted Class Indices				
Test Average Personalization 89.1%			Test Average Personalization 89.5%				
Method	Com. Cost	Gain		Method	Com. Cost	Gain	
Ours (metric)	133		>	Ours (metric)	156		→
Ours (fine-tuning)	255	1.9X	\rightarrow	Ours (fine-tuning)	849	5.4X	>
FedAvg (metric)	383	2.9X	\longrightarrow	FedAvg (metric)	390	2.5X	\rightarrow
[a,b] (fine-tuning)	961	7.2X	>	[a,b] (fine-tuning)	>1000	>6.4X	>

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. *Advances in Neural Information Processing Systems*, *33*, 2020

CIFAR-100:Worst-Case Personalization

CIFAR100, Sparse with Correct Class Association						
Test Lowest Personalization 75.0%						
Method	Com. Cost	Gain				
Ours (metric)	254		\rightarrow			
Ours (fine-tuning)	949	3.7X	\longrightarrow			
FedAvg (metric)	714	2.8X	>			
[a,b] (fine-tuning)	>1000	>3.9X	>			

CIFAR100, Sparse with Random Class Association						
Test Lowest Personalization 73.0%						
Method	Com. Cost	Gain				
Ours (metric)	192		\rightarrow			
Ours (fine-tuning)	721	3.8X	\longrightarrow			
FedAvg (metric)	692	3.6X	>			
[a,b] (fine-tuning)	>1000	>5.2X	>			

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. *Advances in Neural Information Processing Systems*, *33*, 2020

Conclusion

- ♦ Federated Learning
 - ♦ Privacy, Data heterogeneity, Sporadic device activation, millions of devices
 - ♦ Device bias is a significant issue
 - ♦ Proposed Debiasing algorithm, which allows device to fully optimizing local objective
 - ♦ Requires no hyperparameter tuning on epochs etc.
 - ♦ Theory and experiments demonstrate significant computational and communication gains.
- Customization to edge device
 - ♦ User objectives, but can also include device capacity (upcoming work)