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Outline

¢ Vanilla Federated Learning
& Concept and Challenges
¢ Device Debiasing Algorithm

¢ Analysis and experiments

& Personalizing to Edge Device
& Concept & Challenges
& Application of Debiasing Scheme

& Analysis and Experiments

& Customizing to Device Capacity: Challenges
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Federated Learning

¢ Millions of Devices with local models in the System
& Device SMS = Local Data Collection
% Private not shared

& Device model offers local suggestions
& Receives user feedback locally, updates local model

& Local model updated over many SMS data (messages).

® Cloud Server

¢ Different Devices transmit model update

® Server fuses received models within a small time-window

& Transmits to currently active devices

& Active Devices perform model updates

[1] McMahan, H B “Federated Learning: Collaborative Machine Learning without Centralized Training Data.” Google AI Blog, 6 Apr. 2017.
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Federated System Constraints

& Privacy vs. Need for lots of training data

& Device shares only model updates

¢ How to balance privacy vs. data?

& Massive # devices. CIFAR - 10

& Sporadic device updates airplane Sl

automobile r—_-_-J
B B

. . ey bird
& Device Data Variability.

cat

& Users have diverse interests/activity ]
eer

dog
& Device Capacity Variability

frog
& Samsung S21 Ultra vs. Galaxy A10 |

ship

& @Goals: truck

& Accuracy matching training with all device data with

minimal cloud/server Tx/RX, and small latency.
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Massive # Devices
Avg. Model

Server Avg. Statistics

Fusion
Model biases
Stale vs. active models

Privacy
Tx: Model

Updates

Device



Three Problems

¢ How to training global models matching accuracy of centrally trained (data-shared) models
while minimizing communication rounds and bits transmitted?

& Sporadic device activity, and device data variability (profile and size)

¢ How to train models on the cloud that can be rapidly personalized to user-specific tasks?

¢ How to train customized models to meet device capacity specifications?

& OQOur Solution: Local Debiased Training + Server Model Merging.
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Vanilla Federated Learning

& Minimize Global Average Loss (m: # Devices, D, Device k data)

& Local Empirical Loss (available to device k):

& Challenges

& Privacy: Device Data not shared.

& Heterogeneity: imbalanced datasets, not all classes/device

& Activation: only few among millions of devices.
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FedSGD Method

Fort=1,2,...
random devices, S € [m] and server interact
server transmits current model, 6,
clients k € S update
Model update:

Hk — 90 — nVLk(QQ; Dk)

server receives models and updates:

1
90%§29k
S =




FedSGD: High Latency

& Number of Rounds (Latency) for target error
&

& Scales inversely with # active clients Device 1

& Convergence is slow,

¢ # Communication rounds and latency is high

Vanilla “"SGD” Approach

For t=1,2,...
active devices at time t update cloud model (one gradient step)

(9]€ < 90 — UVL;C(HQ; Dk>

server merges active devices:
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Federated Averaging and FedProx

& Let device do some of the "“heavy lifting,”’ by taking more gradient steps (optimize local loss more)

¢ Goal: fewer comms, and low latency.

& Exhibits poor convergence even 1in convex cases

& Sporadic activation & data heterogeneity.

X : more # grad steps — Bias; few grad: large latency.

¢ Introduces #gradient steps as a hyperparameter.

Fed Avg Approach (FedProx = FedAvg + quadratic reg)

For t=1,2,...

active devices perform many gradient steps starting with cloud model

set g 90

for 1=1,2,...K, do for each active device k:
Hk — 0 — nVLk(QI; Dk)
0 «— Qk

server merges active devices:

minimize
L (0) + 5116 — 6o]?

FedAvg
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Proposed Scheme: Debiasing Device Model

& De-biasing local updates to device dataset

& Goal: fewer comms, and low latency.

¢ FedAvg/FedProx: Steps in Biased direction
—V Ly (0o)
& Suppose, provides the correct direction, h := 1 Z V L (6o)
m
ke[m]

¢ This 1s the global gradient (want it to be zero)!!

& Fake Device Loss: Lx(8) — (VLi(0o),0 — o) + (h,0 — 00) + 5|6 — 60|

& subtract biased gradient, add oracle gradient?

& What 1s the impact?

& First step results in: 0, < 0y + nh

Biased direction cancelled
Correct direction substituted
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Debiasing Device Model Update: All active

¢ Fake Oby:

S . —L % VLi(6o
& Correct direction unavailable m £kelm] )

& Server has only local models

. .. Last Tx
& Sporadic comm activity device model

& Loss functions are private

& Server cannot sync all devices

& Leverage the last Tx device model
¢ Available at cloud server

¢ How to circumvent gradient Tx?
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Debiasing Device Model Update

& Proposal: Device optimizes

minimize

h = —

o 2 keim) VLk(0k)

¢ Device Tx Updated model

¢ How does device compute avg approximate gradient?

¢ It does not have to!
& Server
¢ How should server update?

¢ What should server Tx?

& Model average plus approx. grad!
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Server Tx
0,

Ly (0) — (VL (6r),0 — 0o) + %HQ — 6y + %h/||2
Device Optima 6,

VLk(0;) = VL(0r) — (6 — ;)

Linear Eqn

Devices Tx update 6,

Server can update locally!!
Diff in grad = diff in models
(without needing gradient Tx)




Dynamic Debiasing Federated Learning (DyDFL)
with Sporadic activation

Dynamic Regularization Approach

For t=1,2,...
Server:
Rx: model from active devices: 0,
updates state locally: i/ < h' — = 5 (0, — 0p)

m

Model update:

Tx: 0 00 — éh/

Models: Update model by optimizing dynamic loss
Update local state (gradient).
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Does it work? Overcome source bias and converge? Yes!




Analysis of DyDFL

® Convex Case

¢ Number of Rounds (Latency) for target error

7= 0(/F})

& Rapid Convergence and Low Latency

& Dependence on active participation is ~optimal”’

® FedSGD:

& Slow and high latency.

& Non-Convex: # rounds for reaching stationary point
T=0(Z3)
& State-of-art over prior works

& Bits communicated is same as FedAvg/round (cost: extra local state).

& Minimal hyperparameter tuning

NewAlg
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Theory & Comparison to Prior Schemes

Partial Communication Heterogeneity Device

Method Participation per Round Assumption Optimization

Extra States

Ours (DyDFL) Arbitrary Exact/SGD Local and server

Bounded
Gradients

Bounded

FedAvg SGD Steps No

FedProx Gradients SGD Steps No

SCAFFOLD Arbitrary SGD Steps Local and server

FedSplit, FSVRG
FedPD, DANE

- -

FedAvg: McMahan AISTATS 2017.
FEDPROX: Li, MLSys 2020, 2020a.
SCAFFOLD: Karimireddy ICML 2020.
Fedsplit: Pathak R NueRIPS 2020.
FSVRG: Konecny arXiv, 2016.
FEDPD: Zhang arXiv, 2020.

DANE Shamir O, ICML 2014



Experiment Setup

& Datasets
¢ Vision:
& MNIST, CIFAR-10, CIFAR-100, E-MNIST
¢ Language:
& Shakespeare (character prediction)
& Architecture
¢ Vision: 2 Conv layers, 2 Fully connected layers

& Language: Stacked LSTMs
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Experiment: Evaluation Criteria

& Datasets
¢ Vision:
¢ MNIST, CIFAR-10, CIFAR-100, E-MNIST
¢ Language:

& Shakespeare (character prediction)

® Architecture

Dirichlet: 3 classes

¢ Vision: 2 Conv layers, 2 Fully connected layers

& Language: Stacked LSTMs

¢ Evaluation Criteria;:

¢ # Comm rounds to realize target accuracy
¢ Data heterogeneity (Dirichlet)
¢ Scaling with # Devices l

¢ Different levels of activity
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Data Heterogeneity (CIFAR-10)

Ours (DyDFL) 240 Ours (DyDFL) 232

SCAFFOLD 512 SCAFFOLD 594

FedAvg 994 FedAvg 863
FedProx 825 FedProx 930

Key Insights: 10% activity level
DyDFL is agnostic to data heterogeneity.
Achieves fully centralized accuracy (85%)
DyDFL outperforms state-of-art
Similar results for other datasets
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The whole works

CIFAR-10 CIFAR-100

Ours 350 Ours 467

SCAFFOLD 2138 6.1X
FedAvg 1962 5.6X
FedProx 1517 4.3X

SCAFFOLD 2266
FedAvg 1913
FedProx 1794

Our method leads to high savings when scaled to more devices, partial participation, and data heterogeneity.



Customizing Federated Learning to the Edge

& Objective: Average Personalization Loss (APL)

& m Devices,

th has dataset

, personal objective

& Example: Device k user ~ has airplane and auto data

& Interested in ai

& less interested

& Key Challenges:

rplane type classi

In autos.

fication, but data 1s insufficient.

& Global average loss - no longer good objective

¢ Global universal model

objective

- poor performance on user

& Privacy is even more important, but limited local data
means interaction

& l‘tmw'—gz;limwi ait

dataset. Devic

do thi

1S selectiy

‘plane classification requires training on larger

e has a small sample. Pr1

ely wi

ith a partial subset.

Ivacy implies we cannot
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CIFAR - 100
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Customizing Federated Learning to the Edge

& Objective: Personalized Device Loss (PDL)

& m Devices, kth has dataset D,, personal objective PDL,

CIFAR - 100

airplane G % v B E%.ﬁ‘-‘”
autumohller—-—hﬂ*iﬁ: h':.—, éﬂf‘ﬂ;ﬁ

bird
& Loss weighted by user interest - P
5 Y cat l’ '“lh;m

® Model across devices can be different deer if“"imn ”

_ v FESH BRI R
& Average Personalization Loss (APL): frog kjﬁ ﬂﬂ nﬁ Eﬁ‘-ﬂ ﬁma
Ly e R 3 ) R R T R
APL=—> PDL(6 Rk R .
m/; <0 ship [ g iwg. £
eock R e 0 2 B O




How to Benefit from Federated Learning

m
& Average Personalization Loss: API, = i Z PD Lk(ek)
m k=1

& PDL: device personal loss

& Global Optimization decouples into local device minimization problems!!

¢ Key Idea: Common global model ~ locally adaptable
¢ Rapidly Tunable Network:
& Learn a global model for classification, which can be further fine-tuned

¢ Universal Representation Network

& Learn a good global representation (metric) so that task predictors
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Common Global Model with Rapid Fine-Tuning

1 m
& APL Decouples AP, = — PDL.(6

¢ Rapidly Tunable Network.

& Allow small change in network weights

& Common model, and locally adaptable with fine-tuning T,

& APL Minimization: . .
Device dependent tranformation

1 m
APL = — PDL..(T;
- ]; k(Tk(0))

¢ Global Minimization Problem: Can plug-in our DyDFL



Common Feature Representation

1 m
® APL Decouples APL = — PDL.(6

& Universal Representation
& Induce a metric on feature space ([Protonet’17])

& Can train classifier or nearest neighbor rule

® APL Minimization: ;M
APL = — PDL;.(6

¢ Global Minimization Problem

BOSTON
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Device dependent posterior

Dynamic Regularization Approach

For t=1,2,...
Server:
Rx: model 6;, from active devices in S:
updates state locally: h' < h' — 2 >~ (6 — 6o)

m
ke

1
Model update: Oy — — 0
K ,Z;

Tx: 0 +— 00 — %h/

Models: Update model with (PDL,)
Update local state (gradient).



Experiment Setup

¢ Datasets and Network
& Vision: CIFAR-10, CIFAR-100

& Architecture: 2 Conv layers, 2 Fully connected layers

¢ Evaluation Criteria: # Rounds to achieve Target Accuracy
& APL and Lowest Personalization Loss (LPL)
& Sparsely (k classes/device) chosen classes uniformly at random
& Each device randomly permutes class index (PCI).

& Class index, j, in device k does not correspond to index j in another device.

& Example: Airplane is indexed as 1 in device 1 but may be any other number
in device k

& Enhances Privacy.

CIFAR - 10

airplane Gms

automobile r—_-_-J
B B

bird
cat
deer
dog
frog
house
ship

truck
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CIFAR10 — Average Personalization

Ours (metric) Ours (metric) 73

Ours (fine-tuning) Ours (fine-tuning) 323
FedAvg (metric) FedAvg (metric) 95
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[a,b] (fine-tuning) [a,b] (fine-tuning) 792

Ours (metric) has consistently high savings.
Metric adaptation is robust to label permutation.

Ours is better than vanilla FedAvg achieving SOTA.

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing

Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.
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CIFAR10 — Worst-Case Personalization Accuracy

Ours (Metric) 211 Ours (Metric) 100

Ours (fine-tuning) 250
FedAvg (metric) 166
[a,b] (fine-tuning) 710

Ours (fine-tuning) 482
FedAvg (metric) 512

[a,b] fine-tuning 312

Ours with metric based adaptation leads to high savings.
Metric based adaptation is robust to label permutation.

Our (metric or fine-tuning) improves the lowest level personalization.

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing

Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.
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CIFAR-100: Average Personalization

Ours (metric) 133 Ours (metric) 156

Ours (fine-tuning) 255 Ours (fine-tuning) 849 5.4X
FedAvg (metric) 383 FedAvg (metric) 390 2.5X
[a,b] (fine-tuning) 961 [a,b] (fine-tuning) >1000 >6.4X

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing
Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.



CIFAR-100:Worst-Case Personalization

Ours (metric) 254 Ours (metric) 192
Ours (fine-tuning) 949 3.7X Ours (fine-tuning) 721 3.8X
FedAvg (metric) 714 2.8X FedAvg (metric) 692 3.6X
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[a,b] (fine-tuning) >1000 >3.9X [a,b] (fine-tuning) >1000 >5.2X

[a] Fallah, A., Mokhtari, A., & Ozdaglar, A. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing

Systems, 33, 2020
[b] Chen, F., Luo, M., Dong, Z., Li, Z., and He, X. Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876, 2018.




Conclusion

¢ Federated Learning

¢ Privacy, Data heterogeneity, Sporadic device activation, millions of devices

& Device bias 1s a significant issue

& Proposed Debiasing algorithm, which allows device to fully optimizing local objective

& Requires no hyperparameter tuning on epochs etc.

¢ Theory and experiments demonstrate significant computational and communication gains.

¢ Customization to edge device

& User objectives, but can also include device capacity (upcoming work)
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