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What Just Happened?

§For years the common wisdom was that Hardware was a bad 
bet for a venture

§That has changed
§More than 45 start-ups are designing chips for image 

processing, speech, and self-driving cars
§ 5 have raised more than $100 million 
§Venture capitalists have invested over $1.5 billion in chip 

start-ups last year
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Driving Factors

§Pragmatism— “unreasonable” success of neural nets
§Slowing of Moore’s Law has made accelerators more 

attractive
§Algorithms similar to an existing paradigm
§Existing accelerators could easily be repurposed—GPUs 

and DSPs
§Orders of magnitude increase in the size of data sets
§ Independent Foundries—TSMC is perhaps the best known
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What Are Neural Networks Used For? 

Computer vision Self-driving cars

Keyword Spotting Seizure Detection

§ A unifying approach to “understanding” –in contrast to an expert guided 
set of algorithms to recognize faces for example 

§ Their recent success is based on the availability of enormous amounts 
of training data
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Notable Successes
§ Facebooks Deep Face is 97.35% accurate on the “Labeled Faces in the Wild” (LFW) dataset—

as good than a human in some cases

§ Recent attention grabbing application—DeepMind’s AlphaGO
§ It beat European Go champion 

Fan Hui in October 2015
§ It was powered by Google’s 

Tensor Processing Unit (TPU 1.0)
§ TPU 2.0 beat Ke Jie, the world 

no. 1 GO player May 2017
§ AlphaZero improved on that by playing itself
§ More than just NNs
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Slowing of Moore’s Law ⇒ Accelerators
§ Power scaling—ended a long time ago
§ Cost per transistor scaling—more recently
§ Technical limits—still has several nodes to go
§ 2nm may not be worth it—EE Times 3/23/18
§ Time between nodes increasing

§ ROI a show stopper—8/28/18 GlobalFoundries halts 7nm work
§ Next FinFET node would have cost $2-4B

(Source: The Linley Group 
with future nodes being 
Linley estimates)
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Algorithms Fit Existing Paradigm
§ Algorithms fitted an existing paradigm—variations on dense matrix-

vector multiply
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Orders of Magnitude Increase in Data
§ Orders of magnitude increase in the size of data sets
§ Google /Facebook / Baidu / etc. have access to vast amounts of data and  this has 

been the game changer
§ FAANGs (Facebook/Amazon/Apple/Netflix/Google) have access to vast amounts of 

data and this has been the game changer   
§ Add to that list: Baidu/Microsoft/Alibaba/Tencent/FSB (!)
§ Available to 3rd parties—Cambridge Analytica (deceased!) 
§ Open Source

§ AlexNet—image classification (CNN)
§ VGG-16—large-scale image recognition (CNN)
§Deep Residual Network—Microsoft
§ Proposed MLPerf—Google/Biadu led consortium
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What are Neural Nets—NNs 
NEURON

§ Unfortunate anthropomorphization! 
§ Only a passing relationship to the neurons in 

your brain
§ Neuron shown with (synaptic) weighted inputs 

feeding dendrites!
§ The net input function is just a dot-product
§ The “activation” function is a non-linear function
§ Often simplified to the rectified linear unit—ReLU

mandatory brain 
picture
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What are Neural Nets—5 Slide Introduction!
NEURAL NETS
§ From input to first hidden layer is a matrix-vector multiply with a weight matrix

W ⊗ input = V
§ Deep Neural Nets (DNNs) have multiple

hidden layers 
output =  … ⊗ W3 ⊗ W2 ⊗ W1 ⊗ input
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DNN—deep neural networks

§ DNNs have more than 
two levels that are 
“fully connected”

§ Bipartite graphs 
§ Dense matrix operations
§ Other varies of NNs that

depend on fast dot products:
§ CNNs—convolutional NNs
§ RNN—recurrent NNs
§ LSTM—long short-term

memory
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CNN—convolutional neural networks
§ Borrowed an idea from signal processing
§ Used typically in image applications
§ Cuts down on dimensionality

§ The 4 feature maps are produced as a result of 4 convolution kernels 
being applied to the image array
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Training and Inference
§ The weights come from the learning or training phase
§ Start with randomly assigned weights and “learn” through a process of 

successive approximation that typically involves back propagation with 
(stochastic) gradient descent 

§ Both processes involve matrix-vector multiplication
§ Inference is done much more frequently
§ Often inference uses fixed point and training uses floating point

backpropagation
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Summary
§ Basic Algorithm is a vector-matrix multiply

… ⊗ W3 ⊗ W2 ⊗ W1 ⊗ input

§ The number of weigh matrices corresponds to 
the depth of the network—the rank of the matrices 
can be in the millions

§ The non-linear operator ⊗ prevents us from 
pre-evaluating the matrix products—a significant inefficiency

§ BUT it makes possible non-linear separation in classification space
§ The basic operation is a dot product followed by a non-linear 

operation—a MAC operation and some sort of thresholding 

threshold ∑+,-×/0123-
14
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Summary—Note on pre-evaluation
§ Basic Algorithm is a vector-matrix multiply

… ⊗ W3 ⊗ W2 ⊗ W1 ⊗ input
§ The product is a function of  input

§ If ⊗ were simply normal matrix multiply ∙ then

… W3∙W2∙W1∙input

Can be written W∙input

Where W  = … W3∙W2∙W1

§ The inference step would be just ONE matrix multiply

§ Question:  Can we use  (W2 ⊗ W1 ⊗ input�W2∙W1∙input) for representative samples of input as an 

approximate correction
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Classification—often mischaracterized as AI

(Source: Intel)
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What’s Changed?
§ Neural nets have been around for over 70 years—eons in computer-evolution time

§ McCulloch–Pitts Neurons—1943 

§ Countless innovations but the basic idea is quite old
§ Notably back propagation to learn weights in supervised learning
§ Convolutional NN—nearest neighbor convolution layer
§ Recurrent NN—feedback added
§ Long short-term memory—state added

§ Massive improvements in Compute Power & More Data 
§ Larger, deeper, better

§ AlexNet
§ 8 layers, 240MB weights

§ VGG-16
§ 16 layers, 550MB weights

§ Deep Residual Network
§ 152 layers, 229MB weights

17
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Convergence—what is the common denominator?
§Dot product for dense matrix operations—MAC units
§Take away for computer architects:
§Dense => vector processing
§We know how to do this
§Why not use existing—repurpose
§There are still opportunities 
§Size and power
§Systolic-type organizations
§Tailor precision to the application
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Who’s On The Bandwagon?

Recall:
§More than 45 start-ups are designing chips for image processing, 

speech, and self-driving cars
§5 have raised more than $100 million 
§Venture capitalists have invested over $1.5 billion in chip start-ups last 

year

§These numbers are conservative
19
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Just Some of the Offerings
§ Two Approaches

§ Repurpose a signal processing chip or a GPU—CEVA & nVidia
§ Start from scratch—Google’s TPU & now nVidia is claiming a TPU in the works

§ Because the key ingredient is a dot product hardware to do this has existed for decades—DSP MACs
§ Consequently everyone in the DSP space claims they have a DNN solution!
§ Some of the current offerings and their characteristics

§ Intel—purchased Nervana and Movidius
§ Possible use of the Movidius accelerator in Intel’s future PC chip sets

§ Wave—45 person start up with DSP expertise
§ TPU—disagrees with M/soft FPGA solution and nVidia’s GPU solution
§ CEVA-XM6-based vision platform 
§ nVidia—announced a TPU-like processor

§ Tesla for training
§ Graphcore's Intelligent Processor Unit (IPU)  

§ TSMC—no details, has “very high” memory bandwidth 8 bit arithmetic
§ FIVEAI from GraphCore
§ Apple’s Bionic neural engine in the A11 SoC in its iPhone
§ The DeePhi block in Samsung’s Exynos 9810 in the Galaxy S9
§ The neural engine from China’s Cambricon in Huawei’s Kirin 970 handset

20
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Landscape for Hardware Offerings

§ Training tends to use heavy-weight GPGPUs
§ Inference uses smaller engines
§ Inference is now being done in mobile platforms
§ Four solutions:

§Repurposed CPUs
§ASICs
§FPGAs
§Analog
§Academia
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Repurposed CPU—Intel Cascade Lake
§ Add the vector neural network Instruction (VNNI)

§ For convolution loops operating on 8-bit integers, the new vector 
unit fuses three instructions into one 

§ Companion software MKL-DNN—math kernel library for 
deep neural networks

§ The VPDPBUSD instruction fuses MAC operations for INT8 operands
into a 32-bit accumulator to evaluate 4 terms at once
c0 = a3�b3 + a2�b2 + a1�b1 + a0�b0 + c0   

• ai and bi bytes from INT32 a and b

§ VPDWSSD instruction fuses MAC operations for INT16 into a 32-bit accumulator
c0 = a1�b1 + a0�b0 + c0   

§ Triples INT8 over dual AVX Skylake-SP
§ Yields ~ 2� over 
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Repurposed CPU—Arm dot Product Instructions 

§ Arm solution—add dot-product instructions in Neon

§ Supported by NN libraries in Arm’s project Trillium software stack

§ Similar to Intel’s approach

§ 4x performance boost to CNNs
on 64-bit Cortex-A CPUs

§ 4 dot products at once

§ 4 32-bit accumulators each 
evaluating
c0 = a3�b3 + a2�b2 + a1�b1 + a0�b0 + c0

ai and bi bytes from INT32 a and b
§ Cortex-A76 at 2.4GHz gives 614GOP/s

or 307GMAC/s

23
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Google’s TPU 1.0*—a 3 year old technology
§ Matrix multiply unit—65,536 (256x256)

§ 8-bit multiply-accumulate units

§ 700 MHz clock
§ Peak: 92T operations/second

§ 65,536�2�700M
§ >25� more MACs vs GPU
§ >1000� more MACs vs CPU

§ 24 MB of on-chip Unified Buffer
§ 3.5� as much on-chip memory vs GPU
§ Two 2133MHz DDR3 DRAM channels
§ 8 GB of off-chip weight DRAM memory
§ Control and data pipelined
* "In-Datacenter Performance Analysis of a Tensor Processing Unit, Jouppi et al." 44th International Symposium on 

Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.
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Observations

§ TPU 1.0 uses 8 bit integer arithmetic to save power and area

§ A theme for others too—e.g. GraphCore

§ BUT TPU 2.0 appears to be floating point

§ Ease of programming is worth something

§ Systolic operation is best suited to dense matrices

§ Publicly available development environment—Tensor Flow

25
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Change of Direction for TPU 2.0
§ Targeting training too
§ 32 bit floating point
§ 45 TFLOPS
§ 16GB HBM, 600 GB/s mem BW
§ Power consumption?

26
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Academia—Low-Power  Applications 
§ Non-uniform 

scratchpad 
architecture

§ Many always-on 
application executes in 
a repeatable and 
deterministic fashion

§ Optimal memory access 
can be pre-determined 
statically
§ Scratchpad instead of 

cache
§ Assign more frequently 

data to smaller, nearby 
banks
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Academia—Chip implementation

Process 40nm
Chip Area 7.1mm2

# of PEs 4
Accelerator
SRAM Size

270 KB

Available Fixed-
Point Precision

6, 8, 12, 16, 24, 
32 bits

Operating Power 0.288 mW
Efficiency 374 GOPs / W

Reference: S. Bang, et.al, ISSCC 2017
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FPGA-–Microsoft Brainwave 
§ Microsoft’s cloud solution—may morph into an ASIC

§ Intended as a coprocessor 

§ Employs a large number of multiply 

units to accelerate DNNs. 

§ Number of units is depends on the FPGA size

§ Performance comparisons:

29

Selected deep-learning accelerators. 
TOPS=trillions of math op-erations per second. These 

designs all target inferencing. *Includes DRAM. 

(Source: vendors, except †The Linley Group 

estimate)
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Analog—Mythic IPU
§ Premises: 

§ Use Analog In-Memory Computing to eliminate 
processor/memory energy

§ Based on Fujitsu’s 40nm embedded-flash cell

§ Flash cell is used to store 256 different conductances—shown 
as Gs in diagram

§ Conductances are voltage programmed through 8-bit DACs

§ Voltage programmed conductances in memory cells 
represent the neural-network weights.

§ Ohm’s law and current summing

§ Low power—5W

§ To achieve this precision a closed loop calibration phase is
required—takes one minute 

§ Pooling layers (may be non-linear) and activations (the ReLU function) still require 
digital logic

30

(Source: The Linley Group)
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What’s in the Future
§ Investment boom is tailing off—”AI fatigue”

§ Recognition that many of the future ML 

problems will require efficient handling 

of sparse data structures

§ Big data collected from various sources

§ Sensor feed, social media, scientific experiments

§ Challenge: the nature of data is sparse

§ Architecture research previously 

focused on improving compute

§ Sparse matrix computation: a key example of 

memory bound workloads

§ GPUs achieve ~100 GFLOPS for dense matrix multiply vs. ~100 MFLOPS for 

sparse matrices

§ Change of focus to data movement & less rigid SIMD compute 

model
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What Next? Reduce the DNN Size*
§ Recall

§ AlexNet—8 layers, 240MB weights
§ VGG-16—16 layers, 550MB weights
§ Deep Residual Network—152 layers, 229MB weights

§ Large model size leads to high energy cost
§ NNs cannot fit in on-chip SRAM
§ DRAM access is energy-consuming

§ Precision reduction
§ Low-precision fixed-point representation
§ Need hardware support

§ Weights pruning
§ Remove redundant weights
§ Sparse weights matrix

§ Weight sharing
§ Application Specific Accelerators ⍏

* Han et al. “A deep neural network compression pipeline: Pruning, quantization, huffman encoding.” arXiv preprint arXiv:1510.00149 (2015)
⍏Han, et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network." arXiv preprint arXiv:1602.01528 (2016).
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Drawbacks—Sparsity Difficult to Vectorize
§ Execution time increases

§ Computation reduction not fully utilized
§ Extra computation for decoding sparse format

§ AlexNet

Unpruned
Baseline

22% 42%

125%

334%
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OuterSPACE Project

§ SPMD-style Processing Elements (PEs), high-speed crossbars and non-
coherent caches with request coalescing, HBM interface

§ Local Control Processor (LCP): streaming instructions in to the PEs
§ Central Control Processor (CCP): work scheduling and memory 

management
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Q&A

Thank you

Questions?
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