
Dali, Salvador. The Persistence of Memory. 1931.
Museum of Modern Art. New York City.

Memory Persistency
Thomas F. Wenisch

University of Michigan
with Steven Pelley, Aasheesh Kolli,

Sihang Liu, Jeff Rosen, Vaibhav Gogte,
Peter M. Chen, Satish Narayanasamy (UM)

Stephan Diestelhorst, Ali Saidi, William Wang (ARM)

1

Promise of persistent memory (PM)

2

Non-volatilityPerformance

Byte-addressable, load-store interface to storage

Density

Core-
1

Core-
2

Core-
3

Core-
4

L1 $ L1 $ L1 $ L1 $

LLC

DRAM

Recovery

Recovery can inspect the data-structures in
PM to restore system to a consistent state

Persistent memory system

Persistent Memory (PM)

Recovery needs ordered PM updates

Recoverable

4

In-memory data

fillNewNode()

updateTailPtr()

Task: Fill node and add to linked list, safely

In-memory data

Recovery needs ordered PM updates

5

Task: Fill node and add to linked list, safely

fillNewNode()

updateTailPtr()

Recoverable

No ordering à No recovery

Memory persistency models

• Programmers can express write order to PM
• Hardware enforces write order to PM
• Similar to how memory consistency models ensure

store visibility in multi-core systems
• Models needed at the ISA level and language level
– Compiler & runtime map from language to ISA model

6

[Condit ‘09] [Pelley ‘14] [Intel ‘14] [Kolli ‘15] [Joshi ‘15] [ARM ‘16] …

Our work on memory persistency

High-Level Languages (HLL)

Compiler

Architecture (ISA)

Microarchitecture

Libraries & Runtime

Memory Persistency [ISCA 2014]
[IEEE MICRO Top Picks]

High-Performance Transactions
for Persistent Memories [ASPLOS 2014]

Delegated Persist Ordering
[MICRO 2016] [Best Paper Nominee]

Language-Level Persistency [ISCA 2017]
[SIGARCH/TCCA Outstanding Dissertation Award]

Persistency for Synchronization-Free
Regions [PLDI 2018]

Terminology
• Persist
– Act of making a store durable in PM

• Persistent memory order (PMO)
– Memory events ordered by persistency model
– Governs the order in which stores persist

8

Persistency model guarantees

• Ordering
– How can programmers order persists?

• Failure-atomicity granularity
– Which group of stores will persist atomically?

9

Ordering guarantee design space

10

Strict persistency: single memory order

Relaxed persistency: separate volatile and (new) persistent memory orders

Volatile memory order Persistent memory orderHappens before:

Example ISA-level relaxed persistency model:
Epoch persistency [Condit ‘09] [Pelley ‘14] [Joshi ‘15] …

• FENCEs break thread execution into epochs
• Persists across epochs are ordered

– No ordering within epoch

11

Foo()

Bar()
FENCE

PMO
F1

…

…

F2 Fn

B1 B2 Bn

Epoch-1

Epoch-2

Failure-atomicity design space

12

Granularities of
failure-atomicity

Individual
persists

Sync. free
regions

Outer critical
sections

Programmability Easier

Implementation Costlier

Our recent language-level persistency work:
Failure-atomic SFRs [PLDI’18]

13

l1.acq();

x -= 100;

y += 100;

l2.acq();

a -= 100;

b += 100;

l2.rel();

l1.rel();

SFR1

SFR2

• Persist SFRs in sequentially
consistent order

• Allow hardware/compiler
optimizations within SFR

• Inter-thread ordering
– Synchronizing acquire and release ops.

• Failure-atomicity
– Compiler-orchestrated undo-logging

Extends SC-for-DRF guarantee to post-failure recovery

Undo-logging for SFRs

14

L1.acq();
x -= 100;

L1.rel();
SFR1 Recoverable

createUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

SFR1
Need to ensure that undo logs persist and
commit in the order of execution of SFRs

Design 1: Coupled-SFR

15

L1.acq();

x -= 100;

L1.rel();

SFR1

L1.acq();

x -= 200;

L1.rel();
SFR2

Thread 1 Thread 2

+ Persistent state lags execution by at most one SFR
à Simpler implementation, latest state at failure

- Need to flush updates at end the of each SFR
à Performance cost

L1

M1

P1

C1

REL1

SFR1

Thread 1

L2

M2

P2

C2

ACQ2

SFR2

Thread 2

Design 2: Decoupled-SFR
• Coupled-SFR has simple design, but lower perf.
– Persists and log commits on critical execution path L

• Key idea: Decouple persistent state from program exec.
– Persist updates and commit logs in background
– Create undo logs in order
– Roll back updates in reverse order of creation on failure

16

Decoupled-SFR in action

17

L1.acq();
x -= 100;

L1.rel();
SFR1

L1.acq();
x -= 200;

L1.rel();
SFR2

Thread 1 Thread 2

P1

C1

P2

C2

Flush and commit performed
in background

L1

M1

REL1

SFR1

Thread 1

L2

M2

ACQ2

SFR2

Thread 2

Create logs in order
during execution

Performance evaluation

18

0

0.2

0.4

0.6

0.8

1

1.2

CQ SPS PC RB-tree TATP LL TPCC Mean

N
or

m
al

ize
d

ex
ec

. t
im

e
Atlas Coupled-SFR Decoupled-SFR No-persistency

66%
Better

Failure-atomic SFRs outperform atomicity at outer-most critical sections by 66%

Summary
• Memory persistency models provide guarantees required

for recoverable software on persistent memories
– Like consistency models, needed at ISA and language level

• Two key dimensions:
– Ordering
– Failure atomicity granularity

• Failure-atomic synchronization-free regions
– Persistent state moves from one sync. operation to the next
– Extends clean SC semantics to post-failure recovery

19

