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Promise of persistent memory (PM)

Py

Performance Density Non-volatility

denser
THAN CONVENTIONAL

MMMMMM

Byte-addressable, load-store interface to storage

2
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Persistent memory system

1 2 3 4

I | I
L"L_ll's' ______ L _1I_§ i L1S | P L1S |

Persistent Memory (PM)

Recovery can inspect the data-structures in
PM to restore system to a consistent state
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Recovery needs ordered PM updates

Task: Fill node and add to linked list, safely

In-memory data

. fillNewNode() | Q—>O Q
Recoverable y .
r updateTailPtr() i Q_)%
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' Recovery needs ordered PM updates

Task: Fill node and add to linked list, safely

In-memory data

‘. [ fillNewNode()
, updateTailPtr() ‘ m

No ordering = No recovery
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Memory persistency models

[Condit ‘09] [Pelley ‘14] [Intel ‘14] [Kolli ‘15] [Joshi “15] [ARM “16] ...

* Programmers can express write order to PM
e Hardware enforces write order to PM

e Similar to how memory consistency models ensure
store visibility in multi-core systems

* Models needed at the ISA level and language level
— Compiler & runtime map from language to ISA model
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arm

Our work on memory persistency

Libraries & Runtime

Compiler

Architecture (ISA)

Microarchitecture

Language-Level Persistency [ISCA 2017]
[SIGARCH/TCCA Outstanding Dissertation Award]

High-Performance Transactions
for Persistent Memories [ASPLOS 2014]

Persistency for Synchronization-Free
Regions [PLDI 2018]

Memory Persistency [ISCA 2014]
[IEEE MICRO Top Picks]

Delegated Persist Ordering
[MICRO 2016] [Best Paper Nominee]
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Terminology

* Persist
— Act of making a store durable in PM
* Persistent memory order (PMO)

— Memory events ordered by persistency model
— Governs the order in which stores persist
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Persistency model guarantees

* Ordering

— How can programmers order persists?

* Failure-atomicity granularity

— Which group of stores will persist atomically?
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Ordering guarantee design space

Happens before: Volatile memory order > Persistent memory order >

Strict persistency: single memory order

Sle=e

Relaxed persistency: separate volatile and (new) persistent memory orders

%G
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Example ISA-level relaxed persistency model:

Epoch persistency [condit ‘09] [Pelley ‘14] [Joshi “15] ...

r

e FENCEs break thread execution into epochs
e Persists across epochs are ordered

— No ordering within epoch

Foo() :_I__Fl__l_l__Fz_ |__---__J: Epoch-1
FENCE — :

Bar() prsssssss

—————————

———————————————————

11
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Failure-atomicity design space

______________

..............

..............

______________

L2.unlock();
L1.unlock();

Sync. free
regions

“L1.lock();

________________________

2

x -=100;

y +=100;

L2.lock();
a-=100;
b +=100;

L2.unlock();

\ L1.unlock();

e s

Quter critical
sections

Py | MichiganEngineering
L1.lock();
x-=100;]
l"{['+"_—"i'(')'0',‘§
Granularities of Talock();
failure-atomicity La-=100;]
b+=100;
L2.unlock();
L1.unlock();
Individual
persists
Programmability
Implementation

> Easier

> Costlier

12
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Our recent language-level persistency work:
Failure-atomic SFRs [pioris)

Persist SFRs in sequentially

consistent order I1.a,(—:_(1(_)_, ________
Allow hardware/compiler $ 100; SFR1
optimizations within SFR Ly += 100;;
12.acq();

Inter-thread ordering ‘a-=100:"

— Synchronizing acquire and release ops. i b += 100.? SFR2
Failure-atomicity Moo

_ , 12.rel();
— Compiler-orchestrated undo-logging
11.rel();

Extends SC-for-DRF guarantee to post-failure recovery

arm

13
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Undo-logging for SFRs
i createUndolLog (L) E
L1.acq(); 5 ; - i
N : mutateData :
SFR1 | x-=100;; o I T Recoverable

L1.rel(); i [ persistData (P) ‘ E
: ! i

i [ commitLog (C) iv
'SFR1 |

Need to ensure that undo logs persist and
commit in the order of execution of SFRs 14
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Design 1: Coupled-SFR

Thread 1 Thread 2 Thread 1 Thread 2
pEE====)

L1.acg(_),_ o E L1 E ACQ2
SFR1 ix-= 100; ! EI: moto
Llrel(); — LLacq(); SFR1 E M1 i i L2 E
SFR2  1x-= 200; | ] g

L1.rel(); | oP1 |, | M2 | <Ry

+ Persistent state lags execution by at most one SFR EI: i P? i
—> Simpler implementation, latest state at failure : 1 i :I:
- Need to flush updates at end the of each SFR I : 2 :
- Performance cost (REL1 —J
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Design 2: Decoupled-SFR

T o

* Coupled-SFR has simple design, but lower perf.

— Persists and log commits on critical execution path ®

* Key idea: Decouple persistent state from program exec.
— Persist updates and commit logs in background
— Create undo logs in order
— Roll back updates in reverse order of creation on failure

16
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arm

Decoupled-SFR in action

Thread 1 Thread 2 Thread 1
I_'— _____ |
L1.acq(); 11

2]
“
o
— =
[EY
=
D r=~
X
g
I
(BN
o
o
| —
2]
“
x
so®

Thread 2

Create logs in order
during execution

> Ll.acg(_);____ [ M1 E L2 :
SFR2  1x-=200; ! N ARG :I: SFR2
P1 ~ ‘
Flush and commit performed I P2
in background c1 I
I o
17
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Performance evaluation

m Atlas = Coupled-SFR m Decoupled-SFR = No-persistency

=
N
J

=
|

o
o
I

66%
0.6 -

Betterl

o
S
1

Normalized exec. time
=
N
|

CcQ SPS PC RB-tree TATP LL TPCC Mean

Failure-atomic SFRs outperform atomicity at outer-most critical sections by 66%
18
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Summary

LT

* Memory persistency models provide guarantees required
for recoverable software on persistent memories

— Like consistency models, needed at ISA and language level

 Two key dimensions:

— Ordering
— Failure atomicity granularity

e Failure-atomic synchronization-free regions
— Persistent state moves from one sync. operation to the next
— Extends clean SC semantics to post-failure recovery

19



