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Promise of persistent memory (PM)
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Non-volatilityPerformance

Byte-addressable, load-store interface to storage
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Recovery can inspect the data-structures in 
PM to restore system to a consistent state

Persistent memory system

Persistent Memory (PM)



Recovery needs ordered PM updates

Recoverable
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In-memory data

fillNewNode()

updateTailPtr()

Task: Fill node and add to linked list, safely



In-memory data

Recovery needs ordered PM updates
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Task: Fill node and add to linked list, safely

fillNewNode()

updateTailPtr()

Recoverable

No ordering à No recovery



Memory persistency models

• Programmers can express write order to PM
• Hardware enforces write order to PM
• Similar to how memory consistency models ensure 

store visibility in multi-core systems
• Models needed at the ISA level and language level
– Compiler & runtime map from language to ISA model
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Our work on memory persistency

High-Level Languages (HLL)
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Terminology
• Persist
– Act of making a store durable in PM

• Persistent memory order (PMO)
– Memory events ordered by persistency model
– Governs the order in which stores persist 
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Persistency model guarantees

• Ordering
– How can programmers order persists?

• Failure-atomicity granularity
– Which group of stores will persist atomically?
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Ordering guarantee design space
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Strict persistency: single memory order

Relaxed persistency: separate volatile and (new) persistent memory orders

Volatile memory order Persistent memory orderHappens before:



Example ISA-level relaxed persistency model:
Epoch persistency [Condit ‘09] [Pelley ‘14] [Joshi ‘15] …

• FENCEs break thread execution into epochs
• Persists across epochs are ordered

– No ordering within epoch
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Failure-atomicity design space
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Granularities of
failure-atomicity

Individual
persists

Sync. free
regions

Outer critical
sections

Programmability Easier

Implementation Costlier



Our recent language-level persistency work: 
Failure-atomic SFRs [PLDI’18]
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l1.acq();

x -= 100;

y += 100;

l2.acq();

a -= 100;

b += 100;

l2.rel();

l1.rel();

SFR1

SFR2

• Persist SFRs in sequentially
consistent order

• Allow hardware/compiler 
optimizations within SFR

• Inter-thread ordering
– Synchronizing acquire and release ops.

• Failure-atomicity
– Compiler-orchestrated undo-logging

Extends SC-for-DRF guarantee to post-failure recovery



Undo-logging for SFRs
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L1.acq();
x -= 100;

L1.rel();
SFR1 Recoverable

createUndoLog (L)

mutateData (M)

commitLog (C)

persistData (P)

SFR1
Need to ensure that undo logs persist and 
commit in the order of execution of SFRs



Design 1: Coupled-SFR
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x -= 100;
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SFR1

L1.acq();

x -= 200;

L1.rel();
SFR2

Thread 1 Thread 2

+ Persistent state lags execution by at most one SFR 
à Simpler implementation, latest state at failure

- Need to flush updates at end the of each SFR      
à Performance cost
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Design 2: Decoupled-SFR
• Coupled-SFR has simple design, but lower perf. 
– Persists and log commits on critical execution path L

• Key idea: Decouple persistent state from program exec.
– Persist updates and commit logs in background
– Create undo logs in order
– Roll back updates in reverse order of creation on failure
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Decoupled-SFR in action
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L1.acq();
x -= 100;

L1.rel();
SFR1

L1.acq();
x -= 200;

L1.rel();
SFR2

Thread 1 Thread 2
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C2

Flush and commit performed 
in background
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during execution



Performance evaluation
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Failure-atomic SFRs outperform atomicity at outer-most critical sections by 66%



Summary
• Memory persistency models provide guarantees required 

for recoverable software on persistent memories
– Like consistency models, needed at ISA and language level

• Two key dimensions:
– Ordering
– Failure atomicity granularity

• Failure-atomic synchronization-free regions
– Persistent state moves from one sync. operation to the next
– Extends clean SC semantics to post-failure recovery
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