
1

Automatic
Kernel Code Generation for
Focal-plane Sensor-Processor
Devices
Thomas Debrunner - MSc Student Imperial College London
Paul Kelly - Software Performance Optimisation Group Lead,
Imperial College London
Sajad Saeedi – Research Fellow, Imperial College London

2

With kind support from Piotr Dudek and his team at
Manchester University

This work is part of the EPSRC “PAMELA” Project

Cameras produce images for humans,
not machines

3

http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

SCAMP 5 focal-
plane sensor
processor

• 256x256 SIMD processor
array

• Light sensor on every
processor

• Ca.170 transistors per
processor

Piotr Dudek and
colleagues at
Manchester
University

4

http://personalpages.manchester.ac.uk/staff/p.dudek/papers/carey-cnna2012.pdf

Piotr Dudek and
colleagues at
Manchester
University

5

SCAMP 5 focal-
plane sensor
processor

• Seven registers holding
analogue values

• Computation by moving
charge

• Addition is easy

• No multiply

• North-east-west-south
data movement

Basic instruction set (of interest)

• Shift image x
• Shift image y
• Add two images
• Subtract two images
• Scale image by 1/2
• Take absolute value of image

6

This talk
• How to do convolution filters on SCAMP 5?
• For image filtering
• As a component in image processing algorithms

• Notably CNNs

• Potential
• low power
• Extreme effective frame rate

• Example: Viola-Jones face detection
• A compiler: general code generator producing highly-

optimised convolution implementations
7

0
10
20
30
40
50
60
70

Gauss3 Box7 Sobel

Filter time [μs]

CPU GPU CPA
CPU: INTEL i7-6700, GPU: NVIDIA TITAN X, CPA: SCAMP-5c estimate

We can add
repeatedly – so we
can multiply by a
constant

9

Convolution filters on SCAMP 5
Easy filters

10

Convolution filters on SCAMP 5
Harder filters

We can divide by two repeatedly

11

Convolution filters on SCAMP 5
Harder filters – still easy

12

Convolution filters on SCAMP 5
Hard filters

We can approximate

13

Convolution filters on SCAMP 5
Hard filters – easy again

14

We can approximate

Filters often have repeated terms

We implement multiplication using
summations – so there are lots of
common subterms

We can shift intermediate values to save
redundant computation

15

Simple motivating (extreme) example
5x5 Box:

16

+ +

+
+# (1)

+

+
+

 (1) # (1)

+
+ +

+

(1)

" (2)

+

! (2)

“Final Set” (FS) of Partial Value
Representatives (PVR)
The set of summands we need for the
result of the filter application

Finding a plan: End point

17

“Initial Set” (IS)

The set of summands of a fresh image

Finding a plan: Starting point

18

Find a sequence of operations to
transform IS into FS

Objective

19

(Identity filter)

(desired filter)

Instructions as transformations
Shifts:

20

(0 0) (1 -1)
(2 4) (3 3)

→(1) ↓(1)

Instructions as transformations
Scales (Div2):

21

(0 0)
(0 0)

+(1) (0 0)

Instructions as transformations
Additions / Subtractions:

22

(0 1)

+

(0 1)
(1 2)

(1 2)

+

Reverse Split
FS

A B R

A, B transformable
Recursive, continue with B, R

IS

We prune splits that would exceed the number of registers in
the SCAMP 5 device (seven)

We prune subtrees when the resulting instruction sequence is
longer than the best so far

We attempt heuristically-promising splits first

24

Reverse Split
Pruning

25

node1 = east(node0)
node2 = west(node1)
node2 = west(node2)
node4 = west(node1)
node4 = div2(node4)
node3 = add(node2,node1)
node6 = add(node3, node4)

Example

Apply a systematic retiming to minimize shifts
26

Graph Relaxation

0

1 2

3

4

5

B = west(A)
C = div2(A)
B = add(C, B)
A = east(A)
A = add(B, A)

Final resulting code:

27

Register Allocation

Full exhaustive search, compared to heuristic search
on Sobel 3�3 filter (sampled over 256 runs) 28

Evaluation

• SCAMP 5: estimated based on 10MHz clock rate

• 8 common filter
examples on
256�256 8-bit
grayscale image

• CPU and GPU:
default
implementations
shipped with
OpenCV 3.3.0,
with TPP and
IPP enabled and
with CUDA
V8.0.61

• Power estimated
based on TDP
and time

29

Evaluation

7 Stage
Viola-Jones
Face
Detector

• Due to code size and other limitations, we were only able to run a 7-
stage Viola-Jones face detector

• It works as well as a 7-stage CPU implementation
• But for full accuracy, 25 stages are needed. SCAMP 5 would be

slower than CPUs, but uses much less energy 30

Convolution filters are a key capability
With a suitable code generator we can do a lot with very
very simple hardware
By trading approximation against efficiency we can do even
more

Near-camera processing is the only way we can
approach biological levels of energy efficiency
There is a spectrum of design choices:

How much to do in analogue
Where to convert to digital
How compute is distributed and connected to the sensors
How to preprocess to reduce larger-scale data movement

31

Conclusions

32

Backup

Reverse Split
FS

A B R

A, B transformable

34

Example

FS
(-1 0)
(-1 0)
(0 0)
(1 0)
(1 0)

(1 0)
(1 0)

(-1 0)
(-1 0)

(0 0)

A

B

R

FS
(-1 0)
(-1 0)
(0 0)
(1 0)
(1 0)

(1 0)
(1 0)

(-1 0)
(-1 0)

(0 0)

A

B

R

→(2)+

+

+

(-1 0)
(-1 0)

(0 0)

B

R

FS

A B R

A B R1 R2

FS

A B R

A B2RB1

FS

A B R

A BR1 R2

(-1 0)
(-1 0)

(0 0)

B

R

(-1 0)
(-1 0)

(0 0)

B

A

→(1)
+(1)

(-1 0)
(-1 0)

B

(-1 0)
(-1 0)

B
IG
(0 0)
(0 0)

←(1)

