

Sep.17-19 2018

Modeling M0 leakage generically How different can leakages be among different M0 devices?

Si Gao

University of Bristol

.....

Outline

Introduction

Previous Work

Instance difference in Cortex M0

Instruction pre-fetch in LPC1114

Future Work

Side Channel Analysis

SCA

- Attacks based on information leakage (timing, power consumption, electromagnetic emission, etc.)
- Recover the secret key potentially within a few minutes (1 several million traces)

Figure: Side Channel Analysis

SCA on ARM processors

Popular target (good leakage/widely deployed). Interesting attacks are:

🖌 Timing

- Unbalanced branches (RSA [Koc96; BB05], DSA[Koc96], ElGamal [Koc96], etc.)/ branch prediction (Spectre [Koc+18])
- Cache attack (data [Pag02; Ber05; TOS10]/instruction [Aci07])
- Early-Terminating Multiplications [Gro+09]
- Ke Power consumption/electromagnetic emission
 - ARM Cortex-A8: DPA on 1GHz bit-sliced AES [Bal+15]
 - ARM7TDMI: EMA on 40 MHz AES/ECC [GHT05], SPA on 832MHz AES/ECC [Nak+14]

Security Evaluation for power analysis

Countermeasures for power/EM analysis: tricky, prone to mistakes

Tools for Early Detection of Power Leakage

Require power simulators that may be at the level of ...

- K Gate-level netlist: way too complex
- Ke High level source code: the compiler may rearrange code
- Binary code/Assembly level/post compilation
 - HW/HD model: sufficient?
 - User defined model: leave the nasty part to users
 - Profiling model: Meet ELMO!

Meet ELMO

ELMO: Emulator for power Leakages for the MO

- 🖌 Target: ARM Cortex M0
- Ke Thumbulator + profiling power model (carefully derived from a real M0 core)
- 🖌 Input: Binary Code
- K Leakage detection with Fix v.s. Random test

Meet ELMO

Leakage detection: ELMO v.s. Real Traces

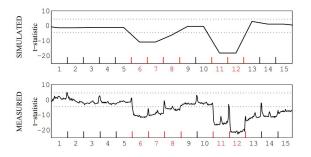


Figure: Fix v.s. Random T-Test for masked ShiftRows

ELMO captures the leaks as they occur also in the real traces.

Meet ELMO

Reasoning the detected leakage

Cycle	Address	Machine	Assembly Code
No.		Code	
1-2	0x08000206	0x684C	ldr r4,[r1,#0x4]
3	0x08000208	0x41EC	ror $r4,r5$
4-5	0x0800020A		str r4, $[r1,#0x4]$
6-7	0x0800020C	0x688C	ldr r4, [r1, #0x8]
8	0x0800020E		ror r4,r6
9-10	0x08000210		str r4,[r1, $\#0x8$]
11 - 12	0x08000212	0x68CC	ldr r4,[r1,#0xC
13	0x08000214	0x41FC	ror $r4, r7$
14 - 15	0x08000216	0x60CC	str r4,[r1,#0xC]

Figure: Thumb assembly implementation of masked ShiftRows

Beyond ELMO...

Big unresolved question: are the profiles that were derived from an STM32F0, suitable for other Cortex M0 cores?

- K Manufacturer-specific features?
- Ke Board effects?
- 🖌 Same power model?

SCALE: A customized side channel evaluation board for Cortex M0

- K Target core: NXP LPC1114FN28
- 🖌 100 Ohm resistor on the VCC end
- K On board amplifier/low pass filter
- 🖌 Internal/external clock signal
- ₭ USB/external power supply

Power Model in LPC1114

Setup Comparison: STM32F0 v.s. NXP LPC1114

Model building

- ✓ Same 23 thumb instructions as ELMO
- Ke Testing mov-instr-mov (3-pipeline) 5000 times, with random operands
- Ke Considering the operands as well as bus transition
- Ke F-test determine whether a regression term is significant enough

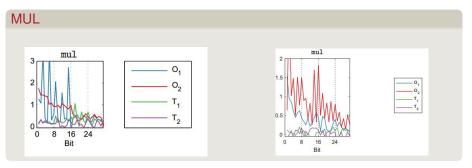
Regression Results

		adds	adds #imm	ands	cmp	cmp #imm	eors	ldr
R^2		0.423	0.353	0.276	0.221	0.260	0.260	0.420
0	Operand 1	21.33	18.58	4.27	13.56	14.42	2.96	1.54
F-statistic	Operand 2	54.30	0	37.95	9.83	0	22.44	104.26
ati	Transition 1	3.26	1.85	1.60	2.11	3.44	1.89	0.71
-st	Transition 2	32.78	61.14	12.88	16.70	35.07	24.75	1.15
H	Overall	27.92	20.73	14.49	10.78	13.36	13.38	27.54
		ldrb	ldrh	lsls	lsrs	movs	movs	muls
							#imm	
R^2		0.422	0.345	0.240	0.284	0.335	0.196	0.628
()	Operand 1	0.94	1.01	35.91	43.27	1.63	17.94	44.43
F-statistic	Operand 2	106.95	75.33	7.73	13.24	20.85	0	206.55
ati	Transition 1	0.77	1.47	1.27	1.11	2.51	1.28	2.04
-st	Transition 2	1.15	1.25	1.12	1.69	50.69	17.89	1.85
H	Overall	27.81	20.07	12.03	15.07	19.19	9.29	64.25
10		orrs	rors	str	strb	strh	subs	subs
								#imm
R^2		0.416	0.385	0.158	0.493	0.230	0.331	0.207
0	Operand 1	12.63	51.09	16.64		40.40	7.31	9.84
sti	Operand 2	61.03	37.10	7.38	4.41	1.72	41.57	0
ati	Transition 1	3.75	2.24	1.26	1.08	1.13	1.94	3.28
F-statistic	Transition 2	29.51	2.89		2.08	1.23	21.81	25.37
ц	Overall	27.13	23.79	7.12	36.95	11.37	18.83	9.96

Table 1: F-tests for significant joint data effects in the power consumption of the M0; tests which fail to reject at the 5% level are shaded grey

Clustering power models for 23 instructions

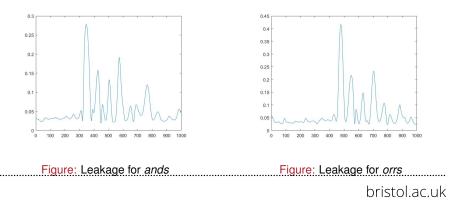
STM32F0


- k consistent with intuition
- ₭ ALU/Shift/Load/Store/Multiply

LPC1114

- most results consistent with intuition
- Shifts (LSL,LSR,LSLimm, etc.) have a separate cluster

Bit-wise Comparison: most instructions are similar


Conslusion

- Power model of LPC1114 is quite similar to STM32F0
- Ke Security evaluation with ELMO is still reasonable
- K Structural difference: Op1&Op2 in MUL
- Ke Other individual features...

Timming Issues...

During the model building process, we constantly find that the leakage point varies among 23 instructions...

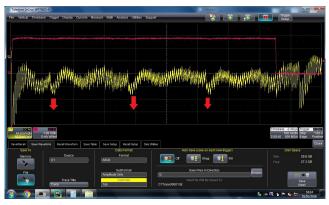
Code layout & operating time

Same codes with different address alignment, learn the cycle count through SysTick:

5C	7C			
1be: str r1, [r0, #0]	1c4: str r1, [r0, #0]			
1c0: b.n 0x1c8	1c6: b.n 0x1ce			
1c2: nop	1c8: nop			
1c4: nop	1ca: nop			
1c6: nop	1cc: nop			
1c8: str r2, [r0, #0]	1ce: str r2, [r0, #0]			

Reasoning: instruction pre-fetch

- 🖌 Code stored in Flash
- Instruction-buffer:"...the Cortex-M0 has a smaller instruction buffer..."
- ✓ 0x1cc seems to be where the CPU finds the next fetching instruction is not in the 16B buffer
- Ke Run from RAM: always constant time!


Consequence: branches

- Ke Code layout affects the operation time
- Ke Branches differ from not only their functionalities, but their layout
- Ke Quite hard to patch; depends on the compiler

Consequence: Traceable implementation

Instruction pre-fetch leaves a peak on power trace:

Consequence: Traceable implementation

Instruction pre-fetch leaves a peak on power trace:

- Ke Similar to trace-driven cache attack
- Ke Acquisition with low resolution
- ₭ Leaves a road map of the CPU execution
- Useful tool for other attacks?

bristol.ac.uk

Future Work

- ✔ Power model for other series: Cortex M0+/M3
- Model quality: is hamming weight good enough?
- Board effect: will them affect security evaluation?

Acknowlegement

Horizon 2020 European Union funding for Research & Innovation

References I

Onur Aciiçmez. "Yet another MicroArchitectural Attack: : exploiting I-Cache". In: *Proceedings of the 2007 ACM workshop on Computer Security Architecture, CSAW 2007, Fairfax, VA, USA, November 2, 2007.* 2007, pp. 11–18.

Josep Balasch et al. "DPA, Bitslicing and Masking at 1 GHz". In: *Cryptographic Hardware and Embedded Systems — CHES 2015: 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings.* Ed. by Tim Güneysu and Helena Handschuh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 599–619. ISBN: 978-3-662-48324-4.

References II

- David Brumley and Dan Boneh. "Remote Timing Attacks Are Practical". In: vol. 48. 5. New York, NY, USA: Elsevier North-Holland, Inc., 2005, pp. 701–716.
 - Daniel J. Bernstein. *Cache-timing attacks on AES*. 2005. URL: http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
 - Catherine H. Gebotys, Simon Ho, and C. C. Tiu. "EM Analysis of Rijndael and ECC on a Wireless Java-Based PDA". In: *Cryptographic Hardware and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings.* 2005, pp. 250–264.

References III

Johann Großschädl et al. "Side-Channel Analysis of Cryptographic Software via Early-Terminating Multiplications". In: *Information, Security and Cryptology - ICISC 2009, 12th International Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers.* 2009, pp. 176–192.

Paul Kocher et al. "Spectre Attacks: Exploiting Speculative Execution". In: *ArXiv e-prints* (Jan. 2018). arXiv:1801.01203.

References IV

Paul Kocher. "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems". In: *Advances in Cryptology CRYPTO 96*. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. Chap. 9, pp. 104–113. ISBN: 978-3-540-61512-5.

Yuto Nakano et al. "A Pre-processing Composition for Secret Key Recovery on Android Smartphone". In: *Information Security Theory and Practice. Securing the Internet of Things - 8th IFIP WG 11.2 International Workshop, WISTP 2014, Heraklion, Crete, Greece, June 30 - July 2, 2014. Proceedings.* 2014, pp. 76–91.

References V

Dan Page. "Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel." In: IACR Cryptology ePrint Archive 2002 (2002), p. 169. URL: http://dblp.unitrier.de/db/journals/iacr/iacr2002.html#Page02.

Eran Tromer, Dag Arne Osvik, and Adi Shamir. "Efficient Cache Attacks on AES, and Countermeasures". In: *J. Cryptol.* 23.2 (2010), pp. 37–71. ISSN: 0933-2790.

.....

Questions?