TORCHQUANT: A HACKABLE QUANTIZATION LIBRARY FOR
RESEARCHERS, BY RESEACHERS

Shyam A. Tailor *! Milad Alizadeh *? Nicholas D. Lane '

ABSTRACT

Quantization is a popular technique for accelerating and compressing neural networks by utilizing low-bit
arithmetic to represent weights and activations. It remains a hot area for research, with continued work on
removing the gap in accuracy between full and low precision models. We observe that researchers in this area tend
to rely on custom implementations, rather than approaches built into the popular machine learning libraries, as they
are not sufficiently flexible to enable research. We are open sourcing TorchQuant, our MIT licensed library that
builds upon PyTorch by providing researchers with modular components and implementations that will accelerate
their research, and provide the community with consistent baselines. Using our library, we provide an example of
how to quickly evaluate a research hypothesis: the “range-precision” trade-off for quantization-aware training. our
library can be found at this URL: https://github.com/camlsys/torchquant.

1 INTRODUCTION

It is traditional to use 32-bit floating point for training and
inference of neural networks. In recent years, however, there
has been interest in using fewer bits for these use-cases. The
benefits of using fewer bits include: (1) reduced data move-
ment, the biggest driver of energy consumption (Horowitz,
2014); (2) reduced storage requirements for weights (model
compression) and runtime memory consumption of activa-
tions; (3) favourable characteristics for accelerator design
e.g. simpler and more efficient processing elements, and
(4) reduced latency in situations where the accelerator is
memory-bound.

Quantization is one of the keys to enabling us to deploy
deep learning to applications that were previously consid-
ered impossible. We are already witnessing these deep
learning being deployed to smartphones for speech recog-
nition and computer vision applications, aided by advances
in hardware-software co-design. By reducing the resource
footprint of our models further through advances in quan-
tization, we can hope to apply deep learning in application
domains such as wearable devices (Tong et al., 2020) or
space satellites (Kothari et al., 2020).

For inference, the use of 8-bit integer (fixed-point) arith-

“Equal contribution 'Department of Computer Science and
Technology, University of Cambridge *Department of Computer
Science, University of Oxford *Samsung AI Center, Cambridge
UK. Correspondence to: Shyam A. Tailor <sat62@cam.ac.uk>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

metic has become commonplace, in part due to it result-
ing in minimal accuracy losses, and widespread hardware
support. Support for quantization-aware training or post-
training quantization for 8-bit arithmetic is now provided
in the popular ML libraries (Abadi et al., 2015; Paszke
et al., 2019), with TensorFlow adding support for flexible
bitwidths in recent releases. These libraries are focused on
productionization, rather than research: therefore, the ap-
proaches employed in these libraries are relatively primitive
compared to the state-of-the-art in research. The research
community continues to march towards reducing the gap
in accuracy between models at very low (as far as 1-bit),
and full precision, with recent approaches enabling minimal
degradation on ImageNet when using 4-bit arithmetic (Esser
et al., 2020). We observe that research works do not rely
on in-built implementations provided by these ML libraries,
and instead re-implement experiments ad-hoc for each paper,
since researchers desire more flexibility than these libraries
accommodate.

To support the research community, we are open-sourcing
our MIT licensed library, TorchQuant, which provides re-
usable components and models for the wider community by
building upon PyTorch, which has become the dominant li-
brary for ML research. We hope our work can provide a firm
foundation for the research community by enabling greater
reproducibility of published works, and faster iteration by
eliminating duplicated work.


https://github.com/camlsys/torchquant

TorchQuant: A Hackable Quantization Library For Researchers, By Reseachers

2 WHY DO WE NEED A NEW
QUANTIZATION LIBRARY?

Popular deep learning frameworks such as PyTorch (Paszke
et al., 2019) and TensorFlow (Abadi et al., 2015) have
started supporting quantization operations. There are also
quantization-specific libraries such as Larq (Geiger et al.,
2020) and AIMET. However, these packages often aim to
hide complexities of quantization and expose off-the-shelf
tested techniques that allows practitioners to train a low-
precision network from scratch, or compress a prerained
network. In contrast, our library focuses on researches work-
ing on developing new quantization schemes. In addition
to providing well-tested and maintained implementations
of commonly used quantization techniques which enables
rapid prototyping, our library provides lower-level hooks,
and more complicated state machines that allows researchers
to fearlessly test new quantization schemes.

The modular design of our library allows easy overriding of
existing behaviour by inheriting or defining new quantizers,
activation range observers, and fused layers. The state ma-
chine allows explicitly placing quantization of layers and
tensors into training, calibration, evaluation mode.

The built-in quantization APIs in deep learning frameworks
(partially) attempt to reap benefits of quantization during
training and inference by actually using quantized tensors
and operations. When doing research on quantization we are
often interested in improving the achievable performance
of the model and leave the deployment gains made possible
by quantization to a later stage. For this reason all quanti-
zation operations in our library are full-precision under the
hood. This means that unlike PyTorch’s support for quanti-
zation that requires implementation of quantized versions
of many operations, our modules run natively on the GPU
like ordinary networks.

The range of support for various types of quantization is rel-
atively limited in these libraries. While affine (fixed-point)
quantization is well supported, there is little support for
schemes such as binarized arithmetic, where each weight
and activation is represented using a single bit, enabling
implementation with only cheap XOR operations (Cour-
bariaux et al., 2016). We need to provide researchers with
the opportunity to quickly experiment with other quantiza-
tion schemes in order to enable more rapid progress to be
made. Ideally, these implementations should be well tested
to ensure that results reported by the community are valid.

3 OUR LIBRARY: TORCHQUANT

Our code employs professional software development prac-
tices. TorchQuant provides full type annotations, aiding
user understanding, and enabling sophisticated code com-
pletion functionality; we also provide documentation and

examples. Additionally, we rigorously test functionality,
and use continuous integration to avoid regressions.

3.1 Overview of Supplied Functionality

Our library consists of three levels of functionality that
build on each other. Users are free to opt-in at the level
of functionality that suits their project: they are free to use
just our quantizer implementations, or use more higher level
functionality which enables entire models to be converted
automatically for research purposes.

Quantizers. Following PyTorch’s convention, we split
our quantizer implementation into stateless functionals,
and stateful modules. Functional code implements differ-
ent quantization formats, and other common functionality
such as gradient clipping. Modules are implemented to
cover common use-cases, and transparently manage the
state around these functionals. For example, we have
implemented range-observing quantizers using this ap-
proach. Quantizers must implement three methods: (1)
pre_observe, where the full-precision tensor is supplied
as an argument prior to quantization; (2) quantize, which
applies the quantization method; and (3) post _observe
where the quantized tensor is supplied as an argument;
this method can be used to implement approaches such
as kurtosis-regularized quantization (Shkolnik et al., 2020),
where a loss function is applied to the distribution of the
quantized tensor’s elements. We are careful to ensure that
all our implementations have full unit-tests to ensure that
the results provided by them are correct. This provides
downstream users with the confidence that their results are
correct, and are not an artefact of a subtly incorrect im-
plementation. All quantizer implementations can be freely
imported into other projects: users do not need to opt-in to
higher-level functionality our library also provides, which
we will elaborate upon next.

State Machines and Module Wrapping. As we identified
in the introduction, a common source of frustration and bugs
is imprecise control over quantizer state. To address this
issue, we introduce an explicit state machine that enables
users to specify behaviour: in a single line of code, users
can disable quantization completely, enable calibration, en-
able quantization-aware training, or enable quantization for
evaluation. This can be also applied at the level of indi-
vidual modules. To opt-in to this functionality, users must
use our QModule interface. There are strong incentives to
do this: we provide functionality to “wrap” sequences of
full-precision modules, while correctly implementing the
state machine. Users of our library can therefore spend their
time focusing on the implementation of their quantization
technique, rather than spending time ensuring that they have
quantized their model correctly.

Model Converters. Quantization works usually benchmark



TorchQuant: A Hackable Quantization Library For Researchers, By Reseachers

upon the same set of models. It is typical to see models
such as ResNets (He et al., 2015), MobileNets (Howard
et al., 2017; Sandler et al., 2019), and EfficientNets (Tan &
Le, 2020) being used to contextualize the performance of
the proposed quantization method. As we have identified
as a common theme, each work tends to re-implement the
quantized version of each model: this results in work being
duplicated, and subtle differences in implementation that
may affect results. To address this, we provide a common
set of model converters that enable quantized versions of
these models to be built. We support the three families of
aforementioned models: users can take advantage of our
model converters by supplying the full precision model,
along with factory functions that generate quantizers for
the weights and activations in the model. Importantly, we
preserve the weights of the full precision model: this greatly
accelerates convergence, and improves the quantized model
accuracy, especially at low bit-widths.

3.2 Future Roadmap

Our initial release is immediately useful to the community,
but there are several features that we believe would be useful
to add in the near future.

Expanding Supported Models. At time of writing, we
support 3 major families of image classification models. In
the future, we hope to support a wider variety of models,
and remove our reliance on hard-coded model converters.
The graph rewriting functionality recently added to PyTorch
(torch. £x) is the ideal approach for this problem. Addi-
tionally, while the quantization literature is most focused on
image models, it is also important to add support for other
domains. We would like our library to seamlessly integrate
with popular language and speech toolkits such as Hugging-
Face (Wolf et al., 2020) and SpeechBrain (Ravanelli et al.,
2021). It would also be beneficial to integrate with federated
learning libraries such as Flower (Beutel et al., 2020).

Methods “Zoo”. It is in the community interest that pro-
posed methods are reproducible. We hope to expand the
scope of our work to hosting tested implementations of
state-of-the-art methods, built on top of our library. This
would enable researchers to quickly iterate, and reduce the
overhead in open-sourcing their contributions.

4 EXAMPLE: EVALUATING THE
RANGE-PRECISION TRADE-OFF

We now provide an example of how our library can be used
to quickly enable new research ideas to be evaluated. In this
section, we expand upon an observation presented in Tailor
et al. (2021), where it was observed that using percentile-
based range-observers could be used to significantly im-
prove quantized model accuracy. In summary, this work

Figure 1. Accuracy of percentile approximations by sub-sampling
across 10 runs. Applied to an intermediate activation tensor from a
ResNet18. We observe that using 1% of the tensor to calculate the
percentile is more than sufficient to arrive at a good approximation
for the 1st and 99th percentile, which we are interested in. Error
bars generated are standard deviation across 10 runs.

argues that for graph neural networks that it is better to trade
range for precision when using quantization-aware train-
ing, as using traditional min/max-based observers results
in distorted ranges due to infrequent outliers. This section
evaluates how this observation applies to image models.

4.1 Implementation

Since TorchQuant already implements quantization using
range observers, we only needed to implement a single class:
a new type of range observer. We provide the abstract class
RangeObserver that requires the implementation of a
single method: observe_batch. Once this method is
defined, we can simply pass our range observer class to our
AffineQuantizer class, which handles the state man-
agement required for using fixed-point integer arithmetic
quantizers. We can quickly evaluate this quantizer across a
variety of models by using our included model converters.

‘We note that calculating percentiles is an expensive opera-
tion; we accelerate it by sub-sampling 1% of values from
tensors with more than 100k elements. The accuracy of this
approximation is justified in fig. 1. In our experiments we
set the range minimum to the Ist percentile, and maximum
to the 99th percentile, and used momentum to interpolate
across batches.

4.2 Results

We evaluated the range-precision trade-off at very low bit-
widths. Since it is well known that MobileNet and Effi-



TorchQuant: A Hackable Quantization Library For Researchers, By Reseachers

Table 1. Test accuracies with different range observers on Ima-
geNet. We use the abbreviation PAct to refer to percentiles being
applied to activations only, and PAIl to refer to percentiles also
being applied to weights. The baseline uses a batch-min/max
observer on weights, and momentum-min/max on activations.

Model Bits Range Observer Top1 % Top5 %
ResNet18 2 Baseline - -
ResNet18 2 PAct 12.6 30.2
ResNetl8 2 PAIl 35.5 60.8

MobileNetV2 4 Baseline 54.5 78.6
MobileNetV2 4 PAct 63.1 84.8
MobileNetV2 4 PAll 66.5 87.2
EfficientNet-BO 4 Baseline 27.8 52.3
EfficientNet-BO 4 PAct 54.4 78.6
EfficientNet-B0O 4 PAll 66.5 87.6

cientNet suffer from wide variance in magnitudes across
channels (Nagel et al., 2019), we evaluate them at 4-bits.
ResNets, by comparison, are more tolerant to quantization,
and we evaluate them at 2-bits to enable the benefit to be
easier to observe.

We used a batch size of 256 and a step learning rate schedule
that decreases by 10x every 30 epochs from an initial value
of 0.01. We found it was vital to use gradient clipping with
percentiles, unlike the baseline: we believe that since there
are a relatively large number of values that are clipped in
training, it is necessary to remove their contribution in order
to preserve gradient accuracy. Our results are presented
in Table 1. We find that applying percentiles is beneficial
for both the weights and activations across all three models
evaluated.

The benefits of using percentiles can be clearly observed in
fig. 2. While the baseline model settles at a maximum range
~15, the percentile model settles nearer to 2.5, with far less
noise. Despite increasing truncation error by clipping more
aggressively, the reduction in rounding error is sufficient to
increase accuracy, as observed in Table 1.

The runtime overhead of using percentiles is not insurmount-
able. We ran each ResNet18 experiment on 2 Nvidia RTX
2080Tis, and obtained a time-per-epoch of 27 minutes for
the baseline. When using percentiles for both weights and
activations, the time-per-epoch was 34 minutes. While this
is a noticeable overhead, it is certainly worth it in the con-
text of better convergence properties. We also note that
PyTorch’s percentile function fully sorts the tensor, which
is not strictly required for percentile calculation, and hence
further speedups may be achievable. TorchQuant’s flexibil-
ity has enabled us to quickly evaluate a research hypothesis,
with the only work required being to implement a new range
observer.

Figure 2. Range observer maximum for an intermediate activation
tensor from an EfficientNet-BO model immediately after a projec-
tion convolution. We see that the momentum + min/max run settles
at a far higher value (near 15), and has greater noise, compared to
the percentile run, where the value settles at 2.5. This enables our
tensor to be represented in quantized form with greater precision,
at the cost of truncation error.

5 CONCLUSION

We have described our quantization library, TorchQuant, that
is explicitly designed to give researchers the freedom to im-
plement novel quantization algorithms. Our library is highly
modular, with users being able to opt-in to higher-level
functionality. We have provided well tested implementa-
tions of quantization primitives that can be easily integrated
into other libraries, along with higher level functionality
to aid researchers in writing bug-free code. In this work
we have demonstrated how we can use it to quickly eval-
uate research hypotheses by assessing the range-precision
trade-off for quantization-aware training; we have found that
trading precision for truncation error is worthwhile at low
bitwidths. This observation may be useful for major library
implementers due to the simplicity of proposed technique.

ACKNOWLEDGMENTS

This work was supported by Samsung Al and by the UK’s
Engineering and Physical Sciences Research Council (EP-
SRC) with grants EP/M50659X/1 and EP/S001530/1 (the
MOA project) and the European Research Council via the
REDIAL project. We also thank ARM for their generous
support.



TorchQuant: A Hackable Quantization Library For Researchers, By Reseachers

REFERENCES

Abadi, M. et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T.,
and Lane, N. D. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390,
2020.

Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., and
Bengio, Y. Binarized neural networks: Training deep
neural networks with weights and activations constrained
to +1 or -1, 2016.

Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy,
R., and Modha, D. S. Learned step size quantization. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rkgO66VKDS.

Geiger, L. et al. Larq: An open-source library for train-
ing binarized neural networks. Journal of Open Source
Software, 5(45):1746, January 2020. doi: 10.21105/
joss.01746. URL https://doi.org/10.21105/
joss.01746.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015.

Horowitz, M. Computing’s energy problem (and what we
can do about it). volume 57, pp. 10-14, 02 2014. ISBN
978-1-4799-0920-9. doi: 10.1109/ISSCC.2014.6757323.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications, 2017.

Kothari, V., Liberis, E., and Lane, N. D. The final frontier:
Deep learning in space. In Proceedings of the 21st Inter-

national Workshop on Mobile Computing Systems and
Applications, pp. 45—49, 2020.

Nagel, M., van Baalen, M., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction, 2019.

Paszke, A. et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural
Information Processing Systems 32. 2019.

Ravanelli, M., Parcollet, T., Rouhe, A., Plantinga, P,
Rastorgueva, E., Lugosch, L., Dawalatabad, N., Ju-
Chieh, C., Heba, A., Grondin, F., Aris, W., Liao, C.-
F., Cornell, S., Yeh, S.-L., Na, H., Gao, Y., Fu, S.-W.,,
Subakan, C., De Mori, R., and Bengio, Y. Speech-
brain. https://github.com/speechbrain/
speechbrain, 2021.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks, 2019.

Shkolnik, M., Chmiel, B., Banner, R., Shomron, G.,
Nahshan, Y., Bronstein, A., and Weiser, U. Robust quan-
tization: One model to rule them all, 2020.

Tailor, S. A., Fernandez-Marques, J., and Lane, N. D.
Degree-quant: Quantization-aware training for graph neu-
ral networks. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=NSBrFgJAHg.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks, 2020.

Tong, C., Tailor, S. A., and Lane, N. D. Are accelerometers
for activity recognition a dead-end? In Proceedings of
the 21st International Workshop on Mobile Computing
Systems and Applications, pp. 39-44, 2020.

Wolf, T. et al. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38—45, On-
line, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/
anthology/2020.emnlp—-demos. 6.


https://openreview.net/forum?id=rkgO66VKDS
https://openreview.net/forum?id=rkgO66VKDS
https://doi.org/10.21105/joss.01746
https://doi.org/10.21105/joss.01746
https://github.com/speechbrain/speechbrain
https://github.com/speechbrain/speechbrain
https://openreview.net/forum?id=NSBrFgJAHg
https://openreview.net/forum?id=NSBrFgJAHg
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

