
ARM Research Summit 2018

Blasting Through The Front-End 
Bottleneck With Shotgun

Rakesh Kumar, Boris Grot, Vijay Nagarajan 



Traditional and emerging server applications
– Deep SW stacks, complex functionality
– Huge instruction working set size
• Multiple megabytes
• Growing 25% per year at Google [Kanev ISCA’15]

Frequent L1-I and BTB Misses
– Working sets don’t fit in latency-critical components

2

The Front-End Problem



3

Front-End Problem #1: L1-I Misses

Core
L1-I

Last Level Cache
(LLC)

Miss

30-40 cycles 



4

Front-End Problem #2: BTB Misses

Core
BTB

Miss

Flush

01020304050607080910+
Execution Cycles

Wrong Path Detected



Bigger or multi-level caches, BTB
– High access latency 

hurts performance 

Prefetching
– No impact on L1-I & BTB 

access latency and area

5

Overcoming the Front-End Bottleneck:
What are the Options?

Core

I$

BTB

Core

I$

BTB



Motivation

Existing front-end prefetching approaches

- Temporal Stream: High storage

- BTB-directed: Low Performance 

Shotgun: Low Storage and High Performance 

Summary

6

Outline



Principle: Record and Replay

History Metadata

7

B

C

A

X

Y

fn2( )

D

fn1( )
I$-block

branch

Temporal Stream Prefetching

Core

A C X Y D

A C X Y D

Confluence [MICRO’15]

A C X Y D

Prefetch TargetsProhibitive metadata storage costs



Idea: Instead of recording, construct the control flow

8

BTB-directed Prefetching

B

C

A

X

Y
D

BTBBranch 
Pred.

L1-I

Last Level Cache
(LLC)

A

Miss

C

Boomerang [HPCA’17]

D

Hit

Miss

Hit

Control flow construction for prefetching 
without metadata cost



9

BTB-directed Prefetching

B

C

A

X

Y
D

BTBBranch 
Pred.

L1-I

Last Level Cache
(LLC)

Boomerang [HPCA’17]

Miss

Prefetching stalls 

on BTB miss

No prefetching under a BTB miss: 
A common case in server workloads 

with large instruction fooprints



Summarizing State-of-the-Art

Temporal Stream Prefetchers

BTB-directed Prefetchers

Performance Storage

Our Goal



Problem: Conventional BTB cannot accommodate the branch 
working set of server workloads

– BTB misses stall prefetching

Objective: Improve BTB control flow coverage

Approach: Rethink BTB organization for prefetching leveraging 
S/W behavior

BTB-directed Prefetching: Another Look

B

C

A

X

Y

B B

TD



12

Understanding Control Flow Behavior

B

C

A

X

Y

fn2( )

fn1( )
I$-block

Cond. branch

Global Control Flow
§ Control flow between distinct code 

regions (e.g. functions).
§ Comprised of unconditional branches
• calls, returns, traps,…

Local Control Flow
§ Inside a code region
§ Comprised of conditional branches

Uncond. branch

D



13

Global Control Flow Insight

B

C

A

X

Y

fn2( )

fn1( )
I$-block

Cond. branch

Small working set size

Uncond. branch

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

| | | | | | | |

Dy
na

m
ic 

br
an

ch
 c

ov
er

ag
e

Static Branches

DB2 (All branches) DB2 (Unconditional branches)

1K 2K 3K 4K 5K 6K 7K 8K

75%
93%

D Practical-sized 
BTB capacity

Global control flow fits in a 
practical-sized BTB



14

Local Control Flow Insight

B

C

A

X

Y

fn2( )

fn1( )
I$-block

Cond. branch

High spatial locality within 
a code region

Uncond. branch

Local control flow affords a compact 
spatial representation

D



Mapping Control Flow to a BTB
Idea: Control flow footprint can be represented as

– Global control flow: unconditional branches
– Spatial encoding (footprint) of local control flow 

around each unconditional branch target

B

C

A

X

Y

fn2( )

BTB

D



16

From Idea to Microarchitecture
BTB

Target

0 1 0 0 1 0 0 0
FootprintTag

Bit-vector

1    2    3    4   5    6    7    8

Encoded Local Control Flow

Bit-vector encodes L1-I block offsets from the target block

A

Unconditional branches + target region footprints 
enable high-coverage L1-I prefetching



17

From Idea to Microarchitecture
BTB

Target

0 1 0 0 1 0 0 0
Tag 1    2    3    4   5    6    7    8

L1-I

Last Level Cache
(LLC)

AA+2A+5

Miss

Predecoder

BTB for conditional
branches (C-BTB)

A

C-BTB: Proactively filled with conditional branches of active regions.



18

Shotgun: A Specialized BTB Organization 
for Control Flow Delivery

BTB for unconditional 
branches (U-BTB)

Return Instruction
Buffer (RIB) 

BTB for conditional 
branches (C-BTB)

Bulk of BTB storage budget goes to U-BTB
(unconditional branches + spatial footprints)

Small size: nearly 20x less storage than U-BTB

Storage optimization for return instructions:
minimal metadata à avoid placement in U-BTB



Evaluation Methodology
• 16-core CMP, 8MB LLC
• L1-I: 32KB 
• BTB: 2K-entry 

– Equivalent storage budget for Shotgun

• Workloads: Enterprise and scale-out (databases, web search, media      
streaming, web serving)

• Evaluated prefetchers:
– Temporal stream prefetcher: Confluence [MICRO’15]

– BTB-directed prefetcher: Boomerang [HPCA’17]
– Shotgun

19



20

Performance Comparison

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

C
on
flu
en
ce

Bo
om
er
an
g

Sh
ot
gu
n

Nutch Streaming Apache Zeus Oracle DB2 Gmean

Sp
ee
du
p



• Front-end bottleneck critical in servers
– Prior work: trades off between storage and performance

• Control flow behavior-guided BTB design
– Global control flow fits in a practical-sized BTB
– Local control flow affords compact spatial representation

• Shotgun
– Uses the BTB to map the instruction working set using 

control flow behavior insights
• Enables highly effective front-end prefetching

– Erases the performance gap between metadata-rich and 
metadata-free front-end prefetchers

21

Shotgun Summary

High performance core front-end 
without costly metadata


