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Traditional and emerging server applications
– Deep SW stacks, complex functionality
– Huge instruction working set size
• Multiple megabytes
• Growing 25% per year at Google [Kanev ISCA’15]

Frequent L1-I and BTB Misses
– Working sets don’t fit in latency-critical components
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The Front-End Problem
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Front-End Problem #1: L1-I Misses
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Front-End Problem #2: BTB Misses
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Bigger or multi-level caches, BTB
– High access latency 

hurts performance 

Prefetching
– No impact on L1-I & BTB 

access latency and area
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Overcoming the Front-End Bottleneck:
What are the Options?
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Motivation

Existing front-end prefetching approaches

- Temporal Stream: High storage

- BTB-directed: Low Performance 

Shotgun: Low Storage and High Performance 

Summary
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Outline



Principle: Record and Replay

History Metadata
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Idea: Instead of recording, construct the control flow
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BTB-directed Prefetching
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Control flow construction for prefetching 
without metadata cost
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BTB-directed Prefetching
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No prefetching under a BTB miss: 
A common case in server workloads 

with large instruction fooprints



Summarizing State-of-the-Art

Temporal Stream Prefetchers

BTB-directed Prefetchers

Performance Storage

Our Goal



Problem: Conventional BTB cannot accommodate the branch 
working set of server workloads

– BTB misses stall prefetching

Objective: Improve BTB control flow coverage

Approach: Rethink BTB organization for prefetching leveraging 
S/W behavior

BTB-directed Prefetching: Another Look
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Understanding Control Flow Behavior
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Global Control Flow
§ Control flow between distinct code 

regions (e.g. functions).
§ Comprised of unconditional branches
• calls, returns, traps,…

Local Control Flow
§ Inside a code region
§ Comprised of conditional branches

Uncond. branch

D
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Global Control Flow Insight
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Local Control Flow Insight
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High spatial locality within 
a code region

Uncond. branch

Local control flow affords a compact 
spatial representation
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Mapping Control Flow to a BTB
Idea: Control flow footprint can be represented as

– Global control flow: unconditional branches
– Spatial encoding (footprint) of local control flow 

around each unconditional branch target
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From Idea to Microarchitecture
BTB

Target

0 1 0 0 1 0 0 0
FootprintTag

Bit-vector

1    2    3    4   5    6    7    8

Encoded Local Control Flow

Bit-vector encodes L1-I block offsets from the target block

A

Unconditional branches + target region footprints 
enable high-coverage L1-I prefetching
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From Idea to Microarchitecture
BTB

Target

0 1 0 0 1 0 0 0
Tag 1    2    3    4   5    6    7    8
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BTB for conditional
branches (C-BTB)

A

C-BTB: Proactively filled with conditional branches of active regions.
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Shotgun: A Specialized BTB Organization 
for Control Flow Delivery

BTB for unconditional 
branches (U-BTB)

Return Instruction
Buffer (RIB) 

BTB for conditional 
branches (C-BTB)

Bulk of BTB storage budget goes to U-BTB
(unconditional branches + spatial footprints)

Small size: nearly 20x less storage than U-BTB

Storage optimization for return instructions:
minimal metadata à avoid placement in U-BTB



Evaluation Methodology
• 16-core CMP, 8MB LLC
• L1-I: 32KB 
• BTB: 2K-entry 

– Equivalent storage budget for Shotgun

• Workloads: Enterprise and scale-out (databases, web search, media      
streaming, web serving)

• Evaluated prefetchers:
– Temporal stream prefetcher: Confluence [MICRO’15]

– BTB-directed prefetcher: Boomerang [HPCA’17]
– Shotgun
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Performance Comparison
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• Front-end bottleneck critical in servers
– Prior work: trades off between storage and performance

• Control flow behavior-guided BTB design
– Global control flow fits in a practical-sized BTB
– Local control flow affords compact spatial representation

• Shotgun
– Uses the BTB to map the instruction working set using 

control flow behavior insights
• Enables highly effective front-end prefetching

– Erases the performance gap between metadata-rich and 
metadata-free front-end prefetchers
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Shotgun Summary

High performance core front-end 
without costly metadata


