
TOWARDS REAL-TIME 3D OBJECT DETECTION FOR AUTONOMOUS
VEHICLES WITH PRUNING SEARCH

Pu Zhao 1 Wei Niu 2 Geng Yuan 1 Yuxuan Cai 1 Bin Ren 2 Yanzhi Wang 1 Xue Lin 1

ABSTRACT
In autonomous driving, 3D object detection is essential as it provides basic knowledge about the environment.
However, as deep learning based 3D detection methods are usually computation intensive, it is challenging to
support real-time 3D detection on edge-computing devices with limited computation and memory resources. To
facilitate this, we propose a compiler-aware pruning search framework, to achieve real-time inference of 3D object
detection on the resource-limited mobile devices. Specifically, a generator is applied to sample better pruning
proposals in the search space, and an evaluator is adopted to evaluate the sampled pruning proposal performance
with Bayesian optimization. We demonstrate that the pruning search framework can achieve real-time 3D object
detection on mobile (Samsung Galaxy S20 phone) with state-of-the-art detection performance.

1 INTRODUCTION

As the rapid development of autonomous vehicles to self-
drive without human intervention, object detection (espe-
cially 3D detection to deal with LiDAR data) serves as a
fundamental prerequisite for autonomous navigation. 3D
detection can extract desirable knowledge about its environ-
ment from 3D point clouds of LiDAR sensors, thus enabling
high-level computations and optimizations for auto-driving.

It is essential to implement real-time 3D object detection
on autonomous vehicles. However, the current deep neural
networks (DNNs) based 3D object detectors usually cost
tremendous memory and computation resources, leading
to difficulties for real-time implementation, especially on
autonomous vehicles with limited hardware resource.

To reduce the DNN model size and computations, DNN
weight pruning (Guo et al., 2016; Wen et al., 2016) has
shown great advantages to remove redundancy in the model,
therefore reducing storage/computation cost and accelerat-
ing inference. There are unstructured pruning scheme (Han
et al., 2015; Liu et al., 2018b) to remove arbitrary weight,
coarse-grained structured pruning scheme (He et al., 2017;
Liu et al., 2018b; Wen et al., 2016) to eliminate whole
filters/channels, and fine-grained structured pruning (Ma
et al., 2020; Niu et al., 2020) to assign different pruning
patterns to convolutional (CONV) kernels. Compared with
unstructured pruning, structured pruning can achieve higher

1Northeastern University, MA 2William & Mary, VA. Corre-
spondence to: Pu Zhao <zhao.pu@northeastern.edu>, Xue Lin
<xue.lin@northeastern.edu>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

hardware parallelism and inference acceleration, assisted by
compiler-level code generation and optimization techniques
(Niu et al., 2020), with competitive detection performance.

Though compiler optimization can support various struc-
tured pruning schemes with notable mobile acceleration
performance, different sparsity schemes lead to different
accuracy and acceleration performance with compiler opti-
mization. For the specific 3D detection problem, it is still
questionable to adopt which sparsity scheme with which
pruning rate to satisfy the accuracy and real-time require-
ments. To find the pruning solution, motivated by the idea of
Neural Architecture Search (NAS) (Liu et al., 2018a; Zoph
& Le, 2017), we propose a compiler-aware pruning search
framework to automatically determine the pruning scheme
and pruning rate for each individual layer. The objective is
to maximize accuracy with an inference speed/latency con-
straint on the target mobile device. Different from previous
work with fixed pruning scheme for all layers, our work can
have different pruning schemes and rates for different layers
in the model. We summarize our contribution as follows,

• We incorporate DNN latency constraint into pruning
search to satisfy a predefined real-time requirement.

• Our framework configures various pruning schemes
and pruning rates for various layers, different from pre-
vious works with fixed pruning scheme for all layers.

• We adopt an ensemble of neural predictors and
Bayesian optimization (BO) to reduce the number of
evaluated proposals, leading to less searching efforts.

• We are the first to achieve (close-to) real-time (98ms)

Submission and Formatting Instructions for MLSys 2021

Generator Evaluator

Provide multiple

pruning proposals

Evaluate and feedback

their perforamnce

Train an ensemble of

neural predictors

Evaluate the selected

proposals

Select proposals based

on Acquisition function

Figure 1. Automatic network pruning search framework

3D detection with PointPillars, on an off-the-shelf mo-
bile phone with minor (or no) accuracy loss.

2 BACKGROUND AND RELATED WORK

2.1 3D Object Detection

3D object detection detects objects with point clouds from
LiDAR sensors. PointPillars (Lang et al., 2019) is a popular
3D detection method with three main stages: (1) A feature
encoder network to convert a point cloud to a sparse pseudo-
image; (2) a 2D CONV backbone to transform the pseudo-
image into high-level representation; and (3) a detection
head to regress 3D boxes. Besides PointPillars, there are
various 3D detection methods such as SECOND (Yan et al.,
2018) and Point-GNN (Shi & Rajkumar, 2020). We mainly
focus on PointPillars as we found that PointPillars is the
only one which can run on mobile while others are not
available on mobile since their special structures to deal
with sparse data are not supported by mobile compiler.

2.2 Weight Pruning Schemes

Previous weight pruning work can be categorized into: un-
structured pruning (Guo et al., 2016; Han et al., 2015; Mao
et al., 2017), coarse-grained structured pruning (He et al.,
2017; Luo et al., 2017; Wen et al., 2016), and fine-grained
structured pruning including pattern (Ma et al., 2020; Niu
et al., 2020) and block (Dong et al., 2020) pruning.

Unstructured pruning (Han et al., 2015; Mao et al., 2017)
removes weights at arbitrary positions, leading to irregu-
lar sparse weight matrix with indices, incurring damages
to the parallel implementations and acceleration perfor-
mance on hardware. Different from unstructured pruning,
coarse-grained structured pruning (He et al., 2017; Liu
et al., 2018b) removes the whole filters/channels to maintain
model structure with high regularity for efficient hardware
parallel implementation, at the cost of certain obvious ac-
curacy degradation. To overcome the disadvantages, fine-
grained structured pruning (Ma et al., 2020; Niu et al., 2020)
follows a pruning pattern (chosen from a predefined library)
to prune each CONV kernel, where the predefined patterns
have been optimized with compiler optimizations for mobile
acceleration. Fine-grained structured pruning can achieve

Table 1. Search space for each DNN layer
Pruning scheme {Filter, Pattern-based, Block-based}

Pruning rate { 1×, 2×, 3×, 5×, 7×, 10×, 15× }

high accuracy due to the flexibility with different patterns,
and high hardware parallelism (and mobile acceleration)
with compiler-based code generation and optimization.

3 AUTOMATIC NEURAL PRUNING SEARCH

We show the framework in Fig. 1, consisting of two ba-
sic components: a generator and an evaluator. Given the
search space, the generator first generates or samples vari-
ous pruning proposals. Then the evaluator evaluates their
detection accuracy and speed performance, and feeds them
back to the generator. Next the generator samples new prun-
ing proposals based on existing proposals’ performance.
After iterations, the framework can obtain the final pruning
proposal with satisfying detection and speed performance.

In each iteration, the evaluator first trains an ensemble of
neural predictors and then selects proposals based on their
acquisition function values enabled by the predictor ensem-
ble. Next the selected proposals are evaluated to obtain
their performance while the rest unselected proposals are
not evaluated, thus reducing evaluation time and efforts.

After the framework finishes and outputs a final pruning
proposal, we further apply ADMM pruning (Zhang et al.,
2018) to perform an enhanced pruning following the best
proposal. Compared with the simple magnitude pruning
(Han et al., 2015) method applied during evaluation for time-
saving, ADMM usually outperforms magnitude pruning in
terms of accuracy with an increased complexity, that is why
we only adopt it for the final proposal.

3.1 Generator

The generator samples pruning proposals from the search
space. Each pruning proposal is a directed graph consisting
of the layer-wise pruning scheme and pruning rate. For
example, it has 20 nodes for a 10-layer DNN model.

3.1.1 Proposal Formulation (Search Space)

Each pruning proposal contains the pruning scheme and
pruning rate for each layer of the model, as shown in Tab. 1.

Per-layer pruning schemes: The generator can choose
from filter (channel) pruning (Zhuang et al., 2018), pattern-
based pruning (Ma et al., 2020) and block-based pruning
(Dong et al., 2020) for each layer. As different layers may
have different best-suited pruning schemes, the generator
can choose different pruning schemes for different layers,
also supported by our compiler code generation.

Submission and Formatting Instructions for MLSys 2021

Per-layer pruning rate: The pruning rate is the rate be-
tween the number of original parameters and that of left
parameters after pruning. We can choose from the list
{1×, 2×, 3×, 5×, 7×, 10×, 15×}, where 1× means the
layer is not pruned (i.e., bypassing this layer).

3.1.2 Proposal Updating

The generator keeps a record of all evaluated pruning propos-
als with their evaluation performance. To generate new prun-
ing proposals, it mutates the best proposals in the records by
randomly changing one pruning scheme or one pruning rate
of one layer. More specifically, it first selects K proposals
with the highest evaluation performance, and mutates each
of them iteratively until it gets C new proposals.

3.1.3 Proposal encoding

As pruning proposals are basically graphs, special atten-
tion is required for the proposal representation. Different
from traditional representations with an adjacency matrix
for graphs, we adopt the pruning encoding to encode each
proposal with a vector of binary values. There is a binary fea-
ture for each possible node in each layer, denoting whether
the node (pruning scheme or pruning rate of certain layer)
is adopted or not. To encode a proposal, we simply check
which pruning scheme or rate for each layer is applied, and
set the corresponding features to 1s. This simple proposal
encoding can help with proposal evaluation.

3.2 Evaluator

The evaluator needs to evaluate proposal performance. We
define the performance measurement (reward) as:

m = V − α ·max(0, r −R), (1)

where V is the validation mean average precision (mAP)
of the model, r is the model inference latency, which is
actually measured on a mobile device with compiler code
optimization and generation for inference acceleration1. R
is the threshold for the real-time requirement. Generally,
satisfying real-time requirement (r < R) with high mAP
leads to high m. Otherwise if mAP is low or the real-time
requirement is violated, m is small.

3.2.1 Fast Evaluation with BO

As it incurs large time cost to evaluate the performance of
each pruning proposal (including pruning and retraining the
model with multiple epochs), we adopt Bayesian optimiza-
tion (BO) (Chen et al., 2018) to accelerate evaluation. The
generator provides C pruning proposals, and the evaluator
first use BO to select B proposal with potentially better
performance. Next the evaluator measure the performance

1The compiler code generation can be performed in parallel
with the pruning proposal evaluation to obtain its speed.

Algorithm 1 Evaluation with predictor ensemble & BO
Input: Observation data D, BO batch size B, BO acquisition
function φ(·)
Output: The best pruning proposal g
for steps do

Generate a pool of candidate pruning proposals Gc;
Train an ensemble of neural predictors with D;
Select {ĝi}Bi=1 = argmaxg∈Gc φ(g);
Evaluate the proposal and obtain reward {ri}Bi=1 of {ĝi}Bi=1;
D ← D ∪ ({ĝi}Bi=1, {ri}Bi=1);

end for

of the selected proposals by pruning following each selected
proposal to obtain its accurate accuracy and speed perfor-
mance, while the rest unselected proposals are not evaluated.
Thus, the number of actual evaluated proposals is reduced
to save the overall pruning evaluation efforts.

In general, there are two main components in BO including
training an ensemble of neural predictors and selecting pro-
posal based on acquisition function values enabled by the
predictor ensemble. To make use of BO, the ensemble of
neural predictors provides an accuracy prediction with its
corresponding uncertainty estimate for an unseen pruning
proposal. Then BO is able to choose the proposal maximiz-
ing the acquisition function. We show the full algorithm in
Algorithm 1 and specify the two components next.

3.2.2 Ensemble of Neural Predictors

We use a neural network repeatedly trained on the current
set of evaluated pruning proposals with their evaluation
performance as a neural predictor to predict the reward (in-
corporating the accuracy and speed performance) of unseen
pruning proposals. The neural network is a sequential fully-
connected network with 8 layers of width 30 trained by the
Adam optimizer with a learning rate of 0.01. Note that it
does not cost much predictor training efforts due to their
simple architectures and parallel training.

For the loss function in neural predictors, mean absolute
percentage error (MAPE) is adopted as it can give a higher
weight to pruning proposals with higher performance:

L(mpred,mtrue) =
1

n

n∑
i=1

∣∣∣∣∣m
(i)
pred −mUB

m
(i)
true −mUB

− 1

∣∣∣∣∣ , (2)

where m(i)
pred and m(i)

true are the predicted and true values of
the reward for the i-th proposal in a batch, and mUB is a
global upper bound on the maximum true reward.

To incorporate BO, it also needs an uncertainty estimate for
the prediction. So we adopt an ensemble of neural predic-
tors to provide the uncertainty estimate. More specifically,
we train P neural predictors using different random weight
initializations and training data orders. Then for any pro-
posal, we can obtain the mean and standard deviation of
these P predictions. More specifically, we train an ensemble

Submission and Formatting Instructions for MLSys 2021

Table 2. Comparison of various pruning methods for PointPillars

Methods
(grid size)

Para.
#

Comp. #
(MACs)

Speed
(ms)

Car 3D detection
Easy Moderate Hard

PointPillars (0.16) 5.8M 60G 553 85.16 74.39 69.42
Filter (0.16) 1.1M 10.8G 178 80.63 67.51 65.28

Pattern (0.16) 1.1M 10.7G 225 83.64 74.30 68.42
Block (0.16) 1.1M 10.7G 268 82.86 75.43 69.71
Ours (0.16) 1.1M 10.7G 193 85.52 76.69 70.10

PointPillars (0.24) 5.4M 28G 253 84.24 75.28 68.46
Filter (0.24) 0.8M 4.0G 82 81.36 68.06 65.77

Pattern (0.24) 0.8M 3.9G 116 82.16 73.93 68.25
Block (0.24) 0.8M 4.0G 140 83.69 74.09 68.06
Ours (0.24) 0.8M 3.9G 98 85.38 75.72 68.53

of P predictive models, {fp}Pp=1, where fp : A→ R with
a pruning proposal g as input and the predicted reward as
output. The mean prediction and its deviation are given by,

f̂(g) =
1

P

P∑
p=1

fp(g), and σ̂(g) =

√∑P
p=1(fp(g)− f̂(g))2

P − 1
.

(3)

3.2.3 Selection with Acquisition Function

After training an ensemble of neural predictors, we can ob-
tain the acquisition function value for proposals in the pool
and select a small part of proposals with largest acquisition
function values. We choose upper confidence bound (UCB)
(Srinivas et al., 2010) as the acquisition function, i.e.,

φUCB(g) = f̂(g) + βσ̂(g) (4)

where the tradeoff parameter β is set to 0.5.

3.2.4 Evaluation with Magnitude Pruning

After selecting pruning proposals from the pool, the evalu-
ator uses magnitude based pruning framework (Han et al.,
2015) (with two steps including pruning and retraining) to
perform the actual pruning and obtain its evaluation perfor-
mance for the proposal. Besides, once the pruning step is
finished, the speed measurement on a mobile device can be
performed in parallel with the accuracy measurement.

4 EXPERIMENTAL RESULTS

4.1 Experiment Setup

We focus on 3D detection and employ the PointPillars (Lang
et al., 2019) as starting point and test on KITTI dataset
(Geiger et al., 2012). We use 40 GPUs for parallel training
and pruning search and it takes about 6 days to find the
best pruning proposal. In Eq. (1), we set α to 0.01 and the
inference time is measured in milliseconds. The pool size C
is set to 50 and the Bayesian batch size B is set to 10. We
test the speed performance on the mobile GPU (Qualcomm
Adreno 640) of a Samsung Galaxy S20 smartphone.

66

68

70

72

74

76

78

0 100 200 300 400 500 600

Figure 2. Comparison with other methods

4.2 Performance on 3D Object Detection

As shown in Tab. 2 and Fig. 2, we compare the performance
of the original unpruned PointPillars model and the model
derived by our method and other pruning methods with
different grid sizes (0.16m and 0.24m). We set the threshold
of the real-time requirements to 200ms for 0.16m gird size
and 100ms for 0.24m. For the grid size, as large grid size
leads to small pseudo-image input size for the model, the
0.24m grid size has a smaller parameter and computation
numbers, and a faster inference speed on mobile GPUs,
compared with the 0.16m grid size.

For the same grid size, compared with the original unpruned
PointPillars model, we observe that our method can signifi-
cantly reduce the number of parameters and computations,
achieving state-of-the-art detection performance while satis-
fying the real-time requirement. The accuracy of our method
is even higher than the unpruned model, demonstrating that
the unpruned model may suffer from over-fitting problem
and removing the redundancy can help with its accuracy.

We also compare with other pruning methods for the same
grid size. For other pruning methods, the same pruning
scheme is applied to all layers and the pruning rate is set
to the same with the overall pruning ratio of our pruned
model (80% for grid size 0.16m and 86% for 0.24m). As
observed, the proposed method achieves the best detection
performance with highest accuracy compared with other
methods with the same pruning scheme for every layer,
demonstrating the advantages of using different pruning
scheme for different layers. We notice that although filter
pruning can be faster than our method, it suffers from an
obvious degradation on the detection performance.

For the speed performance, with grid size 0.24m, the pro-
posed method only needs 98ms to process one frame on
mobile devices with the highest accuracy, demonstrating its
superior performance to achieve (close-to) real-time infer-
ence on mobile with state-of-the-art detection performance.

5 CONCLUSION

We propose pruning search to configure the pruning scheme
and rate for each layer with real-time inference requirement.
Our experiments demonstrate that the proposed method
achieves (close-to) real-time (98ms) 3D object detection on
a mobile phone with minor (or no) accuracy loss.

Submission and Formatting Instructions for MLSys 2021

REFERENCES

Chen, Y., Huang, A., et al. Bayesian optimization in alphago.
arXiv:1812.06855, 2018.

Dong, P., Wang, S., et al. Rtmobile: Beyond real-
time mobile acceleration of rnns for speech recognition.
arXiv:2002.11474, 2020.

Geiger, A., Lenz, P., and Urtasun, R. Are we ready for
autonomous driving? the kitti vision benchmark suite. In
CVPR, 2012.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery
for efficient dnns. In NeurIPS, pp. 1379–1387, 2016.

Han, S., Pool, J., et al. Learning both weights and con-
nections for efficient neural network. In NeurIPS, pp.
1135–1143, 2015.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerat-
ing very deep neural networks. In ICCV, pp. 1389–1397,
2017.

Lang, A. H., Vora, S., et al. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, pp.
12697–12705, 2019.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055,
2018a.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018b.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In ICCV,
pp. 5058–5066, 2017.

Ma, X. et al. Pconv: The missing but desirable sparsity in
dnn weight pruning for real-time execution on mobile
devices. In AAAI, 2020.

Mao, H., Han, S., et al. Exploring the regularity
of sparse structure in convolutional neural networks.
arXiv:1705.08922, 2017.

Niu, W. et al. Patdnn: Achieving real-time dnn execution
on mobile devices with pattern-based weight pruning.
arXiv:2001.00138, 2020.

Shi, W. and Rajkumar, R. Point-gnn: Graph neural network
for 3d object detection in a point cloud. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1711–1719, 2020.

Srinivas, N., Krause, A., et al. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental
design. In ICML, 2010. ISBN 9781605589077.

Wen, W., Wu, C., et al. Learning structured sparsity in deep
neural networks. In NeurIPS, pp. 2074–2082, 2016.

Yan, Y., Mao, Y., and Li, B. Second: Sparsely embedded
convolutional detection. Sensors, 18(10):3337, 2018.

Zhang, T., Ye, S., et al. Systematic weight pruning of dnns
using alternating direction method of multipliers. ECCV,
2018.

Zhuang, Z., Tan, M., et al. Discrimination-aware channel
pruning for deep neural networks. In NeurIPS, pp. 875–
886, 2018.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In ICLR, 2017.

