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Self-Awareness ?
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Computational Self-* Properties

• Self-Awareness [Hinchey2006]:  System is aware of its      
self states and behaviors

• Context-Awareness [Parashar 2005] : System is aware of 
context – i.e., its operational environment 

• Self-configuring -> capability of reconfiguring automatically
• Self-healing [Robertson2005] -> self-diagnosing and self-

repairing
• Self-optimizing-> capability of self-tuning or Self-adjusting
• Self-protecting -> capability of detecting dangerous outcomes 

(e.g. security breaches) and recovering from their effects
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Outline
• Computational Self-Awareness

• Why Self-Aware Chips?

• Cross-Layer Sensing & Actuation

• Towards Self-Aware Chips

• Supervisory Control & Coordination 
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Why On-Chip Self-Awareness (1)?

5[Source: NSF Variability Expedition Project]
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Why On-Chip Self-Awareness (1)?
Variability-induced challenges
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Why On-Chip Self-Awareness (1)?
Variability-induced challenges

7

0        10        20       30        40        50       60        70       80
Core ID

Fr
eq

ue
nc

y 
(G

H
z)

7

6

5

4

3

2

1.2
V

0.8
V

7.3 
GHz

5.7 
GHz

25%

50%

Psleep variation  w/ temperature 
across 5 ARM Cortex M3 processor 
instances

20 30 40 50 60
0

0.1

0.2

0.3

Sl
ee

p 
Po

w
er

 (m
W

)

Temperature (OC)

Frequency variation across 80-core 
processor within a single die in Intel's 65nm 
node at 1.2V and 0.8V [Dighe10] 

Manufacturing

Environment

[Source: NSF Variability Expedition Project]



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #8

Why On-Chip Self-Awareness (1)?
Variability-induced challenges
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Triple Whammy!
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Why On-Chip Self-Awareness (2) ?
• Chips must adapt to:

– Performance, Power, Resilience, Security,…. 

• Provide Guarantees

• Dynamically manage multi-dimensional 

trade-offs

– Performance, Power/Energy, Thermal,…..

– QoS, TDP, Wear-out, ….

Exploit Computational Self-Awareness    
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Outline
• Computational Self-Awareness

• Why Self-Aware Chips?

• Cross-Layer Sensing & Actuation

• Towards Self-Aware Chips

• Supervisory Control & Coordination 
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Cross-Layer Physical/Virtual 
Sensing & Actuation 
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Layers Virtual/Physical Sensors Virtual/Physical Actuators 

Application Execution Time, Workload Power, 
Energy, 

Loop perforation
Algorithmic Choice

Operating   
System

System Utilization
Peripheral States

Task Allocation, Scheduling, 
Migration, Duty  Cycling 

Network/Bus
Communication

Bandwidth; Packet/Flit status;  
Channel Status, Congestion, 
Latency 

Adaptive Routing
Dynamic Bandwidth Allocation
Ch. no and direction

Hardware 
Architecture

Cache misses, Miss rate; access 
rate; IPC,  Throughput, ILP/MLP, 
Core asymmetry

Cache Sizing; Reconfiguration, 
Resource  Provision
Static/Dynamic Redundancy

Circuit/Device Circuit Delay, Aging, leakage
Temperature, oxide breakdown

DVFS, DFS, DVS ABB, Clock and 
Power-gating

Examples of Virtual Sensors and 
Actuators Across Layers of CPSoC
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Outline
• Computational Self-Awareness

• Why Self-Aware Chips?

• Cross-Layer Sensing & Actuation

• Towards Self-Aware Chips

• Supervisory Control & Coordination 
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Self-Reflection &
Introspection

– Ability to create a self-model (introspect)

– Ability to model their own body/structure (usually known self-
modeling)

– Ability to model their own behavior 

– Metacognition capacity: ‘models one’s own thinking’, ‘think 
about thinking’

– System with two/multiple minds: one being modeled  and other 
doing modeling 
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Reflex vs  Reflect

Reflexive, Reactive

l Actions driven solely on external feedback
- E.g., our autonomic nervous systems
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Reflex vs  Reflect

Reflexive, Reactive Reflection, Introspection

l Actions driven solely on external feedback
- E.g., our autonomic nervous systems

l Consider past and future outcomes
- E.g., planning, strategies, policies, …
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Towards Self-Aware Chips:
What we do now

Self-monitoring

Adaptive 
Polices / 

Controller / 
Governor

QoS/ 
Goals output

Simple Adaptation Self-monitoring chip

[Sarma14, CODES+ISSS14]

Temperature 
> 80C

Reflexive, Reactive
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Towards Self-aware chips
Beyond simple reactive models

Self-monitoring and Self-modeling 
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Towards Self-aware chips
Beyond simple reactive models

Self-monitoring and Self-modeling 
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[Sarma14, CODES+ISSS14]

Reflection, Introspection
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Today: “Reflexive” Resource Management
• Dynamic Voltage/Frequency scaling (DVFS)

• Observe-Decide-Adapt approaches

5/16/2018
20

DVFS
policy

Core load increased

Scale core frequency
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RefleXive vs RefleCTive Resource Management

• RefleXive ODA:  decisions taken based on 
• past observations (purely reflexive)   OR 
• predictions made from past observations
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RefleXive vs RefleCTive Resource Management

• RefleXive ODA:  decisions taken based on 
• past observations (purely reflexive)   OR 
• predictions made from past observations

• RefleCTive approach: considers future events that could happen in the 
next iteration of the ODA loop
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Adaptive Resource Management

l Use concept of reflection
- Reflection: change your actions based on both 

external feedback and introspection (i.e., self-
assessment)
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Adaptive Resource Management

l Use concept of reflection
- Reflection: change your actions based on both 

external feedback and introspection (i.e., self-
assessment)

l Reflective resource management combines:
- Current system state assessed from sensing 

information (e.g., readings from performance 
counters, power sensors, etc.)

- Models to predict the behavior of other system 
components before performing an action
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MARS: Our coordination approach
• Coordination though reflective resource management

– MARS: Middleware for Adaptive Reflective Systems

25

Reflective
System Model

Resource 
management 

policy models

Resource 
management 

policy models

Resource 
management 

policy models

Platform HW 
model

Task 
mapping 

policy

What if I change x264 
to a big core ?

Perf. will increase by 2x
Power will increase by 
4x
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Do we have room for reflection ?
l Systems actuations happen at different timescales

l Some actuations happen quickly with little room for 
reasoning

l Other actuations can occur on larger timescales
l Task mapping,  Wear-leveling (for aging)….

Task
mapping DVFS Scheduling

Coarser grained actuation Finer grained actuation

Which core executes a task?
(100’s – 10’s ms)

What’s the next frequency?      Should I preempt a task ?
(10’s ms – 10’s us)                    (<1 us)
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Policy 
n

Resource
Management

Policies

Policy 1

AS

PS

KS

KS

27

MARS middleware for reflective
resource management

AA

PA

KA

KA

SensorsReflective System
Model

Partitioning
models

Kernel
models

HW
models

Policy 
model 0

Policy 
model n

Actuators

Linux kernel

Scheduling, resource 
allocation, DVFS, etc

HMP HW
platform

Applications

System stack



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #28

AS

PS

KS

KS

28

MARS middleware for reflective
resource management

AA

PA

KA

KA

SensorsActuators

Linux kernel

Scheduling, resource 
allocation, DVFS, etc

HMP HW
platform

Applications

System stack



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #29

Policy 
n

Resource
Management

Policies

Policy 1

AS

PS

KS

KS

29

MARS middleware for reflective
resource management

AA

PA

KA

KA

SensorsActuators

Decisions Linux kernel

Scheduling, resource 
allocation, DVFS, etc

HMP HW
platform

Applications

System stack

Sensed dataSensed data



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #30

Policy 
n

Resource
Management

Policies

Policy 1

AS

PS

KS

KS

30

MARS middleware for reflective
resource management

AA

PA

KA

KA

SensorsReflective System
Model

Partitioning
models

Kernel
models

HW
models

Policy 
model 0

Policy 
model n

Actuators

DecisionsDecisions Linux kernel

Scheduling, resource 
allocation, DVFS, etc

HMP HW
platform

Applications

System stack

Sensed data



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #31

Linux kernel
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Example: Reflective Task Mapping
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Example: Reflective Task Mapping
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Example: Reflective Task Mapping
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Example: Reflective Task Mapping
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SPARTA improvements
l 8-core big.LITTLE Exynos SoC

- 4x big
- 4x LITTLE

l Workload mixes (4 tasks each)
- Mibench
- x264 (Parsec)

l SPARTA vs Linux's GTS
l Avg. improvements of 16% in 

energy efficiency without 
performance degradation
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CODES+ISSS ’16
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MARS: Middleware for Adaptive 
Reflective Computer Systems

l Framework and tools for developing reflective 
resource/power management policies
- Use models to predict system behavior
- Enable easy adaptation to runtime changes
- Case studies show promise

MARS framework is open source

https://github.com/duttresearchgroup/MARS
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Outline
• Computational Self-Awareness

• Why Self-Aware Chips?

• Cross-Layer Sensing & Actuation

• Towards Self-Aware Chips

• Supervisory Control & Coordination 
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Goals and Autonomy
Goal

● Single, straightforward objective
− E.g., hit the pin
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Goals and Autonomy
Goal

● Single, straightforward objective
− E.g., hit the pin

● What happens when we introduce 
unpredictability?
− E.g., balls with different sizes, shapes 

weights; uneven or damaged surfaces

Model Imperfection
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Goals and Autonomy

● Constrain behavior so we are always 
headed toward the goal 
− E.g., bumpers

Supervision
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Goals and Autonomy

● Constrain behavior so we are always 
headed toward the goal 
− E.g., bumpers

● Bonus: what about when we have more 
complex or multiple goals?

Supervision
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• Autonomy and robustness through supervisory control

SPECTR: Our Supervisory Approach

*Rahmani, A. M., Donyanavard, B., Mück, T., Moazzemi, K., Jantsch, A., Mutlu, O., & Dutt, N., SPECTR: Formal Supervisory Control 
and Coordination for Many-core Systems Resource Management.  ASPLOS ‘18



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #45

SPECTR: Our Supervisory Approach
• Autonomy and robustness through supervisory control

*Rahmani, A. M., Donyanavard, B., Mück, T., Moazzemi, K., Jantsch, A., Mutlu, O., & Dutt, N., SPECTR: Formal Supervisory Control 
and Coordination for Many-core Systems Resource Management.  ASPLOS ‘18

Low-level	controllers	satisfy	
objective
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SPECTR: Our Supervisory Approach
• Autonomy and robustness through supervisory control

*Rahmani, A. M., Donyanavard, B., Mück, T., Moazzemi, K., Jantsch, A., Mutlu, O., & Dutt, N., SPECTR: Formal Supervisory Control 
and Coordination for Many-core Systems Resource Management.  ASPLOS ‘18

Low-level	controllers	satisfy	
objective

Supervisor	bounds	behavior	of	
controllers,	manages	goal
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SPECTR: Our Supervisory Approach
• Autonomy and robustness through supervisory control
• Case Study*

*Rahmani, A. M., Donyanavard, B., Mück, T., Moazzemi, K., Jantsch, A., Mutlu, O., & Dutt, N., SPECTR: Formal Supervisory Control 
and Coordination for Many-core Systems Resource Management.  ASPLOS ‘18

ODROID-XU3 platform contains an 
Exynos 5422 Octa-core SoCLow-level	controllers	satisfy	

objective

Supervisor	bounds	behavior	of	
controllers,	manages	goal
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SPECTR: Our Supervisory Approach
• Autonomy and robustness through supervisory control
• Case Study*

*Rahmani, A. M., Donyanavard, B., Mück, T., Moazzemi, K., Jantsch, A., Mutlu, O., & Dutt, N., SPECTR: Formal Supervisory Control 
and Coordination for Many-core Systems Resource Management.  ASPLOS ‘18

ODROID-XU3 platform contains an 
Exynos 5422 Octa-core SoCLow-level	controllers	satisfy	

objective

Supervisor	bounds	behavior	of	
controllers,	manages	goal

SPECTR
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State

If	power	is	in	
safe	region,	
prioritize	QoS
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State

If	power	exceeds	
threshold,
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State

If	power	exceeds	
threshold,	
reduce	power
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State

If	power	exceeds	
threshold,	
reduce	
power...until	it	
lowers	again
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Example: Power Capping
● Specify desired behavior via accepted and forbidden 

states to restrict the behavior of the system
Forbidden	
State

If	power	exceeds	
threshold,	
reduce	
power...until	it	
lowers	again
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SPECTR Demonstration
QoS Task: x264

[Rahmani18] ASPLOS ‘18



Copyright © 2018  Dutt Research Group    https://duttgroup.ics.uci.edu #56

SPECTR Demonstration
QoS Task: x264

Safe	Phase: QoS	app	only
SPECTR satisfies	FPS	with	
minimum	power

[Rahmani18] ASPLOS ‘18
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SPECTR Demonstration
QoS Task: x264

Emergency	Phase:	TDP	reduced	
in	response	to	thermal	event
SPECTR satisfies	FPS	and power

[Rahmani18] ASPLOS ‘18
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SPECTR Demonstration
QoS Task: x264

Disturbance	Phase:	TDP	
returned	to	normal,	
background	tasks	introduced
SPECTR prioritizes	power	
capping

[Rahmani18] ASPLOS ‘18
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SPECTR Demonstration
QoS Task: x264

SPECTR	meets	FPS	target	
when	possible,	while	honoring	
power	cap

[Rahmani18] ASPLOS ‘18
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Outline
• Computational Self-Awareness

• Why Self-Aware Chips?

• Cross-Layer Sensing & Actuation

• Towards Self-Aware Chips

• Supervisory Control & Coordination 

• Wrap-up 
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Key Take-Away 1:
Cross-Layer Physical/Virtual Sensing & Actuation 

Applications
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From today’s chips

Self-monitoring and simple adaptation

Simple Controller

QoS/ 
Goals output

Simple Adaptation Self-monitoring chip

Reflexive, Reactive
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Key Take-Away 2:
Towards on-chip self-awareness
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Adaptive Polices 
/ Controller / 

Governor

QoS/ 
Goals

System Behavior
(Model Building)

measurement

input

Se
lf-

Aw
ar

e
A

da
pt

at
io

n

output

Simple Adaptation Self-monitoring chip

[Sarma14, CODES+ISSS14]

Reflection, Introspection
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Key Take-Away 3:
Supervisory Control & Coordination

Supervisory Control & Coordination

Adaptive Polices / 
Controller / 
Governor

QoS/ 
Goals

System Behavior
(Model Building)

measurement

input

Se
lf-

Aw
ar

e
A

da
pt

at
io

n

output

Simple Adaptation Self-monitoring chip

[Rahmani18, ASPLOS 2018]
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Ongoing Efforts
l More heterogeneity 

(CPU+GPU+DSP+NPU+FPGA+…..)
- Reconfigure workloads at runtime to freely migrate 

between resources

- Complex predictive models

l Distributed management
- Propagating sensing info across non-coherent 

processing units

l Non-compute resources
- Memory and I/O
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Ongoing Challenges

l Self-trained models
- Add feedback for error correction
- Challenging for models that are non-linear and/or based on 

heuristics

l Machine learning
- Replacement for analytical/heuristic-based models ?
- Unsupervised machine learning to mine sensing data and find 

patterns for optimizing policies or creating new ones

l Policy supervisors
- Provide formal or stronger guarantees
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