
FRAMER:
Efficient Per-Object
Metadata Management

Myoung Jin Nam (Korea Univ.)

David Greaves (Cambridge Univ.)

Periklis Akritidis (Niometrics)

Memory Safety
❖ A program execution is memory safe so long as memory

access errors never occur:
❖ Buffer overflows, null pointer dereference, use after free, use

of uninitialized memory, illegal free

❖ Memory safety categories
❖ Spatial memory safety

❖ Stops out-of-bounds pointers. (buffer overflows)

❖ Temporal memory safety

❖ Stops dangling pointers (use-after-free, double-free)

Spatial Memory Safety

A pointer to be dereferenced at run-time is in-bound?

Object_1 object 2

pointer:

Base Limit

Memory

object 1

Tracking Pointers/Objects

Fragmentation

Object_1

Fragmentation

Object_2

Memory
entry_1

entry_2

entry_3

Base address, limit, …

Base address, limit, …

Base address, limit, …

Disjoint metadata table

 Choice of data structure
➡ Zillions of objects (pointers) to track?

Runtime Checks

Halt right before out-of-bound pointers are dereferenced.

Object allocation

Pointer arithmetic,
type casts

Memory access
Check memory corruption

Time

Runtime Overheads

dynamic instruction
cache misses

Tight loop
Un-instrumented

Metadata update
Instrumented

(inline)

2× of the original run-time

High and unpredictable overhead

Metadata Storage 1/2

Storage object

base:
pointer:

limit: Fat pointer

• FAST (high locality of references)
• Low compatibility with precompiled libs
• Metadata overwritten by unsafe typecast

Metadata Storage 2/2

Disjoint metadata
• Better compatibility
• Safer metadata management
• Expensive lookup
• Space overheads

Fragmentation

Object_1

Fragmentation
Object_2

Memory

&p

&p’

&p’’

&p

Base address, limit, …

Base address, limit, …

Base address, limit, …

Disjoint metadata table

pointer (p)

Trade-offs
Runtime overheads

Complete checking

Precise checking

Better compatibility

Space overheads
(shadow space, padding)

Incomplete checking
(e.g. internal overflows)

Approximate checking

Less compatibility

FRAMER
❖ High locality of references

❖ Having an object carry its own metadata
❖ Using a supplementary table

❖ Streamlined metadata lookup in the data structure
❖ The worst case: O(1)

❖ Compatibility
❖ Avoiding internal memory layout change or superfluous

padding
❖ Scalability

❖ Extending its usage to type safety, thread safety or garbage
collection using per-object information

Framer is
Implemented

as a LLVM LTO Pass
for

whole program analysis

Overall Architecture

Source
Code
Source
Code
Source
Code

Hardened
Executable

Analyse

Transform

Source
Code
Source
Code
Binary

Libraries Generate
CodeLink

Static
Library

Generate
LLVM IR

Metadata Storage

For the higher locality of references, we attach a header.

Object_1

Base address Limit

Memory

objectHeader Header

 pointer

Metadata Retrieval

Object_1

 tagged pointer

Base address Limit

Memory

objectHeader Header

The address of a header is derived from a tagged pointer.

48 bits

Base Tag Flag

15 1

Object’s wrapper frame

(Wrapper) Frame

An object’s wrapper frame is defined as the smallest frame.

Object_1

Memory

objectHeader Header

aligned by 2^n

2^n

Derivation of Header Location

Object_1

Memory

objectHeader Header

offset
48 bits

Base offset Flag

15 1

Object’s wrapper frame (2^n)

The base of the wrapper frame= p & ((̃0)<<n)

p

Slot

Object_1

Memory

objectHeader Header

offset

48 bits

Base offset Flag

15 1

Slot: (2^15)-sized frame

Derivation Fails

Object_1 objectHeader

Slot 1 Slot 2

Offset cannot be used as relative location information.

p1 p2

Shadow Space

Heap

libc

Application memory

Heap

libc

Shadow memory

stack stack

Address Space

Compact Shadow Space

Heap

libc

Application memory Shadow memory

stack

Process Address Space

N : 1

Heap

libc
stack

Framer’s Shadow Space

48 bits

Base N Flag

15 1

Heap

libc

Application memory Shadow memory

stack

Heap

libc
stack

Process Address Space

Mapping Table Entries

False Negatives

Object

pointer:

Base Limit Base’ Limit’

B
C

A
C

A
Memory

object_1

entry_1

entry_2

Base, limit, …

Base’, limit’, …

Tracking objects requires checks at pointer arithmetic
to keep track of intended referents.

Now, False Positives

 int *p;

 int *a= (int*)malloc(100*sizeof(int));

 for (p=a; p<&a[100];++p)

 *p=0;

/* p == &a[100] */

Should we check bounds at pointer arithmetic
AND

memory read/write??

Previous Solutions

Obje

pointer:

Base Limit

Memory
Array

1. Pad an off-by-one byte.

addr mark=1

Obje

pointer:

Base Limit

Memory
Array

2. Mark out-of-bound pointer at pointer arithmetic.

In-frame Checking

Object_1

Memory

objectHeader Header

Object’s wrapper frame

pointer:

Check only in-frame at pointer arithmetic.

Interoperability

❖ Framer ensures compatibility with un-instrumented
libs
❖ Strip-off tagged pointers passed to pre-compiled libs

❖ Header attached does not damage compatibility

object allocation

Pointer arithmetic

Memory access

Update metadata and
replace uses with a tagged pointer.

Check bounds,
and strip-off a tag.

Replace it with a padded one.

Check in-frame.

Program Transformation

Time

int myarray [10]; /* object allocation*/
int * p= myarray; /* pointer creation && assignment */
p= p+4; /* pointer arithmetic */
p=10; / pointer dereference */

Optimization

❖ Reduce objects to be tracked.
❖ Use the compiler’s variable range analysis

❖ Minimise the penalty of using tagged pointers

❖ Reduce run-time checks
❖ Hoist runtime checks outside loops

❖ Remove redundant checks due to a previous check

❖ Remove checks for pointers statically determined safe

Advantage
❖ High locality of references

❖ Storing per-object metadata in the header

❖ Supplementary table in the form of a contiguous array.

❖ Low, stable cache misses compared to other approaches

❖ Streamlined metadata lookup
❖ Direct access to the corresponding header or entry < hash table

management

❖ Low space overhead
❖ Compact encoding of addresses

❖ 4 bytes of size information < 1 word (the base) + alpha

Discussion

❖ Losing high locality for big-sized arrays
❖ Vulnerable to overwrites on metadata by user

program’s unsafe type casts like fat pointers
❖ More compact encoding for supplementary

metadata table
❖ Reducing dynamic instruction counts using static

analysis

