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Memory Safety
❖  A program execution is memory safe so long as memory 

access errors never occur:  
❖ Buffer overflows, null pointer dereference, use after free, use 

of uninitialized memory, illegal free 

❖ Memory safety categories 
❖ Spatial memory safety 

❖ Stops out-of-bounds pointers. (buffer overflows) 

❖ Temporal memory safety 

❖ Stops dangling pointers (use-after-free, double-free)



Spatial Memory Safety

A pointer to be dereferenced at run-time is in-bound?
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Tracking Pointers/Objects

Fragmentation
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entry_1
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Disjoint metadata table

 Choice of data structure 
➡ Zillions of objects (pointers) to track?



Runtime Checks

Halt right before out-of-bound pointers are dereferenced.

Object allocation 

Pointer arithmetic, 
type casts

Memory access
Check memory corruption

Time



Runtime Overheads

# dynamic instruction 
# cache misses

Tight loop
Un-instrumented

Metadata update
Instrumented  

(inline)

2× of the original run-time

High and unpredictable overhead



Metadata Storage 1/2

Storage object

base: 
pointer:

limit: Fat pointer 

• FAST (high locality of references) 
• Low compatibility with precompiled libs 
• Metadata overwritten by unsafe typecast



Metadata Storage 2/2

Disjoint metadata 
• Better compatibility 
• Safer metadata management 
• Expensive lookup 
• Space overheads
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Trade-offs
Runtime overheads 

Complete checking 

Precise checking 

Better compatibility 

Space overheads  
(shadow space, padding) 

Incomplete checking 
(e.g. internal overflows) 

Approximate checking 

Less compatibility 



FRAMER
❖ High locality of references 

❖ Having an object carry its own metadata 
❖ Using a supplementary table 

❖ Streamlined metadata lookup in the data structure 
❖ The worst case: O(1) 

❖ Compatibility 
❖ Avoiding internal memory layout change or superfluous 

padding  
❖ Scalability 

❖ Extending its usage to type safety, thread safety or garbage 
collection using per-object information



Framer is  
Implemented  

as a LLVM LTO Pass 
for  

whole program analysis  

Overall Architecture
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Metadata Storage

For the higher locality of references, we attach a header.
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Base address Limit
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objectHeader Header
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Metadata Retrieval

Object_1

  tagged pointer

Base address Limit

Memory

objectHeader Header

The address of a header is derived from a tagged pointer.

48 bits

Base Tag Flag

15 1



Object’s wrapper frame

(Wrapper) Frame

An object’s wrapper frame is defined as the smallest frame.

Object_1

Memory

objectHeader Header

aligned by 2^n

2^n



Derivation of Header Location

Object_1

Memory

objectHeader Header

offset
48 bits

Base offset Flag

15 1

Object’s wrapper frame (2^n)

The base of the wrapper frame= p & (( ̃0)<<n)

p



Slot

Object_1

Memory

objectHeader Header

offset

48 bits

Base offset Flag

15 1

Slot: (2^15)-sized frame



Derivation Fails

Object_1 objectHeader

Slot 1 Slot 2

Offset cannot be used as relative location information.

p1 p2



Shadow Space

Heap
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Compact Shadow Space
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Framer’s Shadow Space
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Mapping Table Entries



False Negatives

Object

pointer:
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B
C

A
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A
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entry_2

Base, limit, …

Base’, limit’, …

Tracking objects requires checks at pointer arithmetic 
to keep track of intended referents.



Now, False Positives

  int *p;

  int *a= (int*)malloc(100*sizeof(int));

  for (p=a; p<&a[100];++p) 

     *p=0;

/*  p == &a[100]  */ 

Should we check bounds at pointer arithmetic 
AND  

memory read/write??



Previous Solutions

Obje

pointer:

Base Limit

Memory
Array

1. Pad an off-by-one byte.

addr mark=1

Obje

pointer:

Base Limit

Memory
Array

2. Mark out-of-bound pointer at pointer arithmetic.



In-frame Checking

Object_1

Memory

objectHeader Header

Object’s wrapper frame

pointer:

Check only in-frame at pointer arithmetic.



Interoperability

❖ Framer ensures compatibility with un-instrumented 
libs 
❖ Strip-off tagged pointers passed to pre-compiled libs 

❖ Header attached does not damage compatibility



object allocation 

Pointer arithmetic

Memory access

Update metadata and 
replace uses with a tagged pointer.

Check bounds, 
and strip-off a tag.

Replace it with a padded one.

Check in-frame.

Program Transformation

Time

int myarray [10];   /* object allocation*/
int * p= myarray;  /* pointer creation && assignment */
p= p+4;                /* pointer arithmetic */
*p=10;                  /* pointer dereference */



Optimization

❖ Reduce objects to be tracked. 
❖ Use the compiler’s variable range analysis  

❖ Minimise the penalty of using tagged pointers 

❖ Reduce run-time checks 
❖ Hoist runtime checks outside loops 

❖ Remove redundant checks due to a previous check 

❖ Remove checks for pointers statically determined safe



Advantage
❖ High locality of references 

❖ Storing per-object metadata in the header 

❖ Supplementary table in the form of a contiguous array. 

❖ Low, stable cache misses compared to other approaches 

❖ Streamlined metadata lookup  
❖ Direct access to the corresponding header or entry < hash table 

management 

❖ Low space overhead 
❖ Compact encoding of addresses 

❖ 4 bytes of size information < 1 word (the base) + alpha



Discussion

❖ Losing high locality for big-sized arrays 
❖ Vulnerable to overwrites on metadata by user 

program’s unsafe type casts like fat pointers 
❖ More compact encoding for supplementary 

metadata table 
❖ Reducing dynamic instruction counts using static 

analysis


