

Toward Zero-Power Smart Sensing in the IoT Era

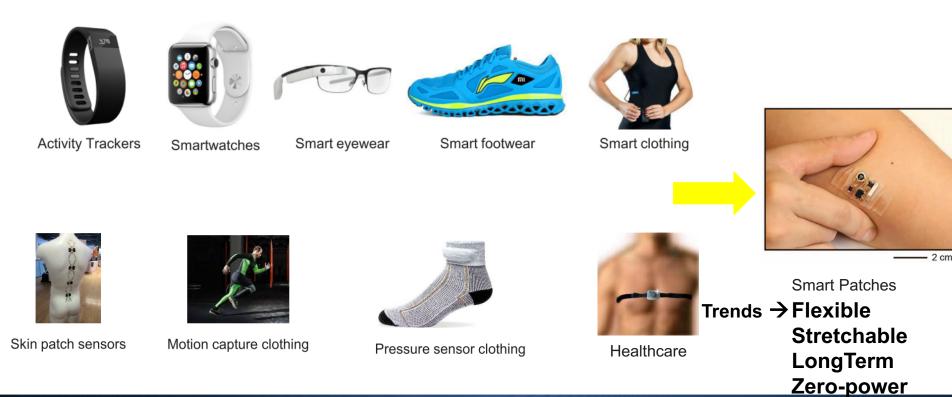
Michele Magno*°

ETH Zurich, Switzerland,

*DEI, University of Bologna, Italy,

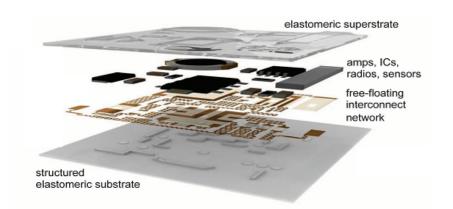
ARM RESEARCH SUMMIT 2018. September 17-19, 2018 at Robinson College in Cambridge, UK

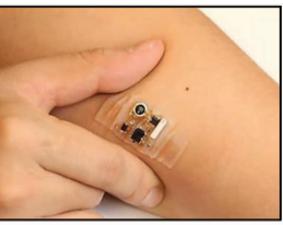
Credits: Luca Benini, Philipp Mayer, Raphael Strebel



Wearable and Sensing Devices

- Wearable devices are getting momentum
 - Sensors are common on a great number of wearables





Soft-Hard integration

Integration of thin high performance and commercial components with flexible technology to achieve long and continuous monitoring of physiological parameters

- 2 cm

IoT Devices/Sensors' Batteries

- Battery dominates devices size limiting Lifetime and Intelligence of IoT Devices
- Limited Energy Limits Computational resources
 - Very few examples of Long Lasting & smart devices
- Battery charging discourages the use of smart sensors in many IoT applications
 - Inaccessible places
 - Long-term monitoring
 - Wearables

Toward self sustainable IoT

1.) Low power system design

Department of Information Technology and Electrical Engineering

Energy Harvesting

6

Michele Magno

Energy Harvesting

Energy harvesting is the process by which energy is captured and stored. This term often refers to small autonomous devices – micro energy

Thermal

Airflow

Photovoltaic

Electromagnetic

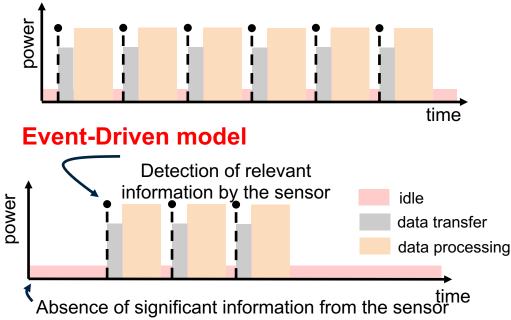
•A Survey of Multi-Source Energy Harvesting Systems, Alex Weddell, Michele Magno, Davide Brunelli, Geoff Merrett, Bashir Al-Hashimi and Luca Benini, in: DATE 2013, 2013

Which source from small IoT?

Source Polarity	Efficiency	Harvested Power	Characteristics	
DC	10~24%	100 mW/cm ² (Outdoor)	Operating conditions vary widely with environment light level. MPPT	
			algorithms needed to achieve maximum power transfer	
DO	~0.1%	60 μW/cm² (Human)	Low output voltage. Step-up circuit needed.	
DC	~3%	~1-10 mW/cm ² (Industrial)	Impedance matching to achieve maximum power transfer	
AC	25~50%	~4 µW/cm ³ (Human motion - Hz)	High AC output voltage with positive and negative fluctuations	
	25~50%	~800 µW/cm³ (Machines - KHz)	(spikes). Rectifier & Step-down circuits are needed.	
	~39% (Dynamic)	35 µW/cm² (@ <1 m/s)	Dual or 3-phase output. Rectifier is needed.	
AC	~41% (Generator)	3.5 mW/cm² (@ 8.4 m/s)	MPP varies slightly with wind speed. Impedance matching is sufficient to achieve maximum power transfer in many applications	
AC	~50%	0.1 μW/cm² (GSM 900 MHz) 0.001 mW/cm² (WiFi)	Impedance matching to achieve maximum power transfer	
	Polarity DC DC	PolarityEfficiencyDC10~24%DC~0.1%DC~3%AC25~50%AC~39% (Dynamic)AC~41% (Generator)	Polarity Efficiency Harvested Power DC 10~24% 100 mW/cm² (Outdoor) DC 10~24% 100 µW/cm² (illuminated office) DC ~0.1% 60 µW/cm² (Human) DC ~3% ~1-10 mW/cm² (Industrial) AC 25~50% ~4 µW/cm³ (Human motion - Hz) AC ~39% (Dynamic) 35 µW/cm³ (Machines - KHz) AC ~39% (Dynamic) 3.5 mW/cm² (@ <1 m/s)	

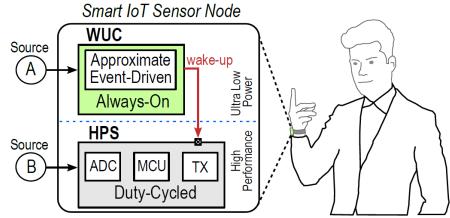
Self-Sustaining Smart Audio Detector

1.) Low power system design

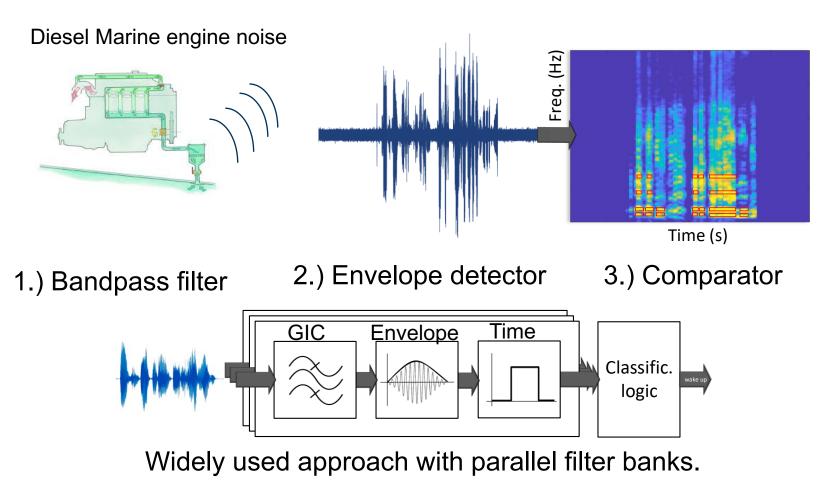


3.) Smart sensing

µW smart audio detector for perpetual operation **Event-Driven Sensing**


Department of Information Technology and Electrical Engineering

Traditional Polling model



- Very low constant power
- Asynchronous events
- Lower Latency

- Always-on electronics
- Suitable for long-term /rare events

Always on Audio Features extraction

Experimental results.

- Sensitivity: 59 dB SPL @ 1kHz (i.e. Conversation at 2m)
- **128 programmable frequencies:** 200 Hz 3.35 kHz in 25 Hz steps
- Adaptive gain: 3.3, 5, 10
- Interfaces:
 I2C, UART, GPIO
- Dimension: 26 x 26 mm

Department of Information Technology and Electrical Engineering

ALWAYS ON WITH 62µW

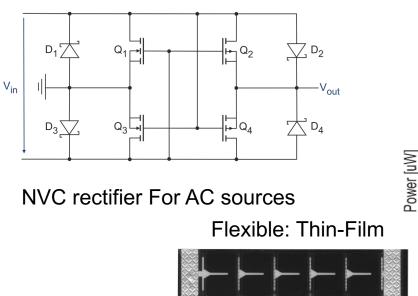
Submarine

	sub. present	no sub.		
detected	100 (TP)	0 (FP)		
not detected	0 (FN)	100 (TN)		
mean time until wake-up: 2.23 s				

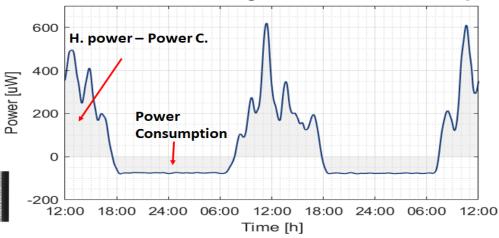
Crying baby

		baby crying	no crying
-	detected	100 (TP)	0 (FP)
-	not detected	0 (FN)	100 (TN)

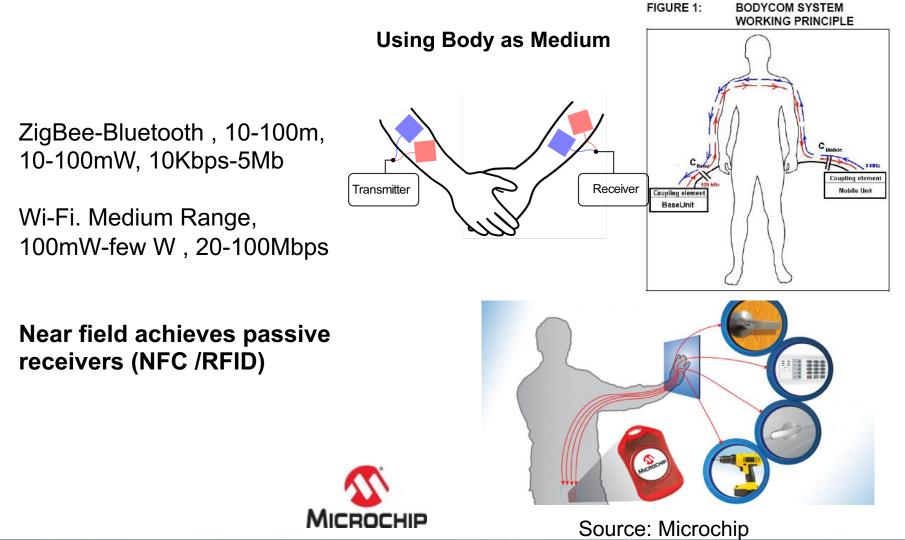
mean time until wake-up: 14.67 s


Power consumption

			⊢62.86 uW		
			12%	LDO	02100 011
			_		
0.9 V supply	LT3009	7.60 μW			
Microphone	ICS-40310	28.37 μW			
GIC filter	OPA2379	11.97 µW	45%	microphone	
Detector	OPA379	7.88 µW			
Comparator	LPV7215	2.74 μW			
Microcontroller active	PIC12LF1509	4.30 µW	-		
Microcontroller idle	PIC12LF1509	0.04 µW	- 19%	GIC	
Detection multiple freq.		62.86 μW	- 1970	GIC	
Detection single freq. (idle)		58.59 μW	-		
			13%	detector	
			4%_	comparator	
			7%_	MCU	
					└ 0 uW


Energy Harvesting

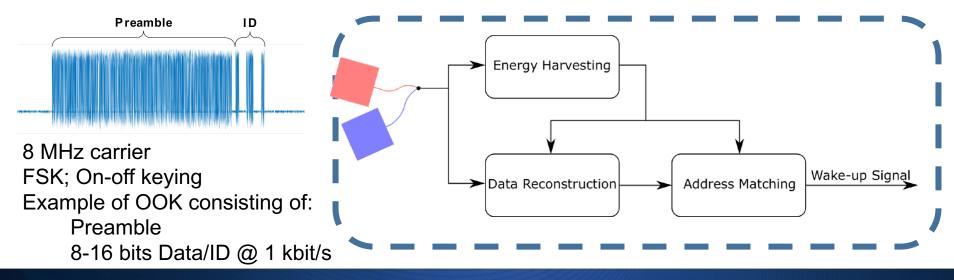
- Thermoelectric (heat)
- Piezoelectric (vibration)
- Photovoltaics (light)
- Microbial Fuel Cell


Tested with indoor light and flexible solar panel

Zero-Power Touch Receiver for Communication and sensing

Short-Range Communication

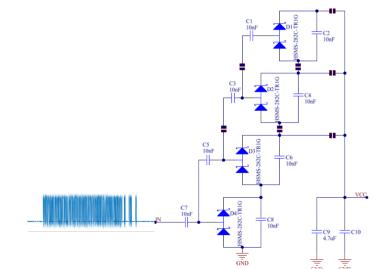
Department of Information Technology and Electrical Engineering

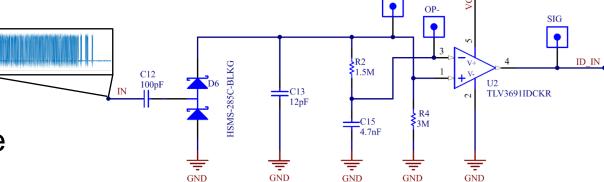

Zero-Power Receiver for Touch communication and sensing

Features:

- Battery-Free Receiver
- Always-on Touch Switch
- Data Parsing
- Addressing
- MCU battery less
 - Security
- Wake up External Logic
- Intra-Body Extra-Body

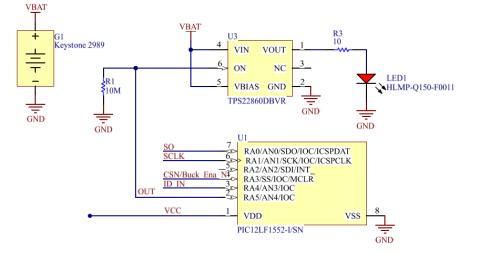
ETH Patent Pending





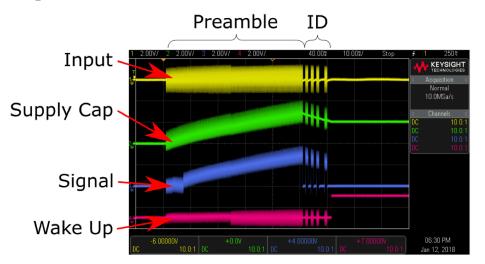
Hardware – EH & Data Reconstruction

- Small capacitor
- Can cold start.
- Villard voltage doubler
 - Low leakage diodes
 - Selectable number of stages



- Low V_{forward} diodes
- Ultra low power comparator (75 nA)
- Low pass filter voltage as reference

Hardware – Address Matching / Security Algorithms

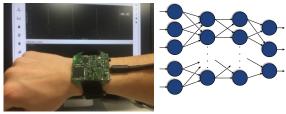

- Low power microcontroller
 - PIC12LF1552
 - 20 nA sleep
 - 270 μA @ 2 MHz
- Low power switch
 - 2 nA leakage
 - switches LED for demonstration

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Department of Information Technology and Electrical Engineering

Experimental Results - Table

Round Electrodes 16 cm^2


	Transmission Voltage	Distance	Max. Voltage	Total Energy	Average Energy Transmission	ID Received
Zero Power Touch Receiver		$0 \mathrm{~cm}$	$4.49 \mathrm{~V}$	$48.9~\mu\mathrm{J}$	$246 \mathrm{~nJ/ms}$	Yes
Data Rate: 1 kbit/s	3.0 V	$5~{\rm cm}$	$2.57 \mathrm{~V}$	$18.1~\mu\mathrm{J}$	$69.1 \mathrm{~nJ/ms}$	Yes
Wake Up time : <mark>20 ms</mark>		$10~{\rm cm}$	1.66 V	$8.0 \ \mu J$	$38.9 \mathrm{~nJ/ms}$	No
Data Packet: tested up 128bytes with 200ms		$15~\mathrm{cm}$	$1.61 \mathrm{~V}$	$7.0 \ \mu J$	$28.0 \; \mathrm{nJ/ms}$	No
preamble (50% bits '0' and bit '1').		$20~{\rm cm}$	$1.61 \mathrm{~V}$	$6.9 \ \mu J$	$25.5 \; \mathrm{nJ/ms}$	No
Distance: 170cm		$25~{ m cm}$	$1.41 \mathrm{~V}$	$6.1 \ \mu J$	$22.9 \mathrm{~nJ/ms}$	No
Very Low Transmission Energy: 1.1356uJ per bit,		$0~{ m cm}$	8.16 V	$164 \ \mu J$	$1617 \; \mathrm{nJ/ms}$	Yes
Energy neutral with small size solar cell or kinetic EH		$5~{ m cm}$	$8.01 \ V$	$152~\mu { m J}$	$868 \ \mathrm{nJ/ms}$	Yes
Whole System Power consumption: Zero Power		$10~{ m cm}$	$7.54 \mathrm{~V}$	$138~\mu J$	$720 \; \mathrm{nJ/ms}$	Yes
in sleep mode.	$5.5 \mathrm{V}$	$15~\mathrm{cm}$	6.88 V	$118 \ \mu J$	$603 \; \mathrm{nJ/ms}$	Yes
Security algorithms can be implemented the on-		$20~{\rm cm}$	7.06 V	$120 \ \mu J$	$591 \; \mathrm{nJ/ms}$	Yes
board microcontroller		$25~{ m cm}$	$6.21 \mathrm{~V}$	$102 \ \mu J$	$466~{ m nJ/ms}$	Yes
		$170~{\rm cm}$	$2.53 \mathrm{~V}$	$15.1 \ \mu J$	$62.3 \mathrm{~nJ/ms}$	Yes

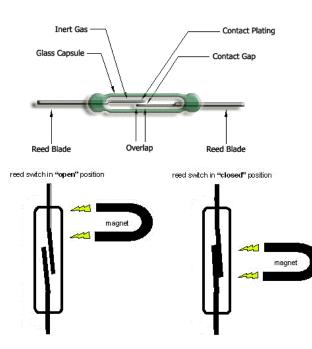
Conclusions

- Importance of low power in battery operated devices
- Achieving self-sustainable devices is possible also in challenging applications
 - Low power design
 - Energy harvesting
 - Intelligence on board
 - Low power communication
- Two different devices ready for flexible electronics
 - Zero Power Touch
 - Smart Audio
- Open-Source Fast Artificial Neural Network Library for ARM-Cortex-M Family! --→ Visit the Poster Session

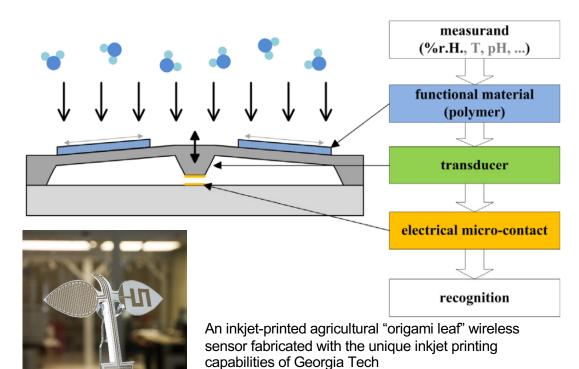
Open-Source Provided by ETH Zurich

https://github.com/lukasc-ch/FANN-on-ARM

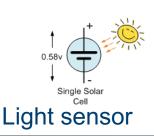
- Jokic, Petar, and Michele Magno. "Powering smart wearable systems with flexible solar energy harvesting." In *Circuits and Systems (ISCAS), 2017 IEEE International Symposium on*, pp. 1-4. IEEE, 2017.
- Strebel, R. and Magno, M., 2018, April. Zero-power receiver for touch communication and touch sensing. In *Proceedings* of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (pp. 150-151). IEEE Press.
- Mayer, P., Magno, M., & Benini, L. (2018, March). Combining microbial fuel cell and ultra-low power event-driven audio detector for zero-power sensing in underwater monitoring. In *Sensors Applications Symposium (SAS), 2018 IEEE* (pp. 1-6). IEEE.



Department of Information Technology and Electrical Engineering


Simple example sense and achieving zero power switches

Eidgenössische Technische Hochschule Zürich


Swiss Federal Institute of Technology Zurich

binary zero-power sensor - similar idea used in the magnetic switches

Source: <u>http://phys.org/news/2013-10-unique-</u>origami-shaped-antennas.html#jCp

