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“Everyone (thinks they) can eeek” use relaxed atomics (RAts)

Correctness Health-cede violations:
Incorrect usage % No formal definition % Not portable

- Hard to debug % Out-of-thin-air values*




No Formal Specification for Relaxed Atomics

C++17 "specification" for relaxed atomics

Races that don't order other accesses
Implementations should ensure no “out-of-thin-air”

«FUVRURSA IR LA ST ARy H9nea< o4 thligwn
sHRMAILYnd days) trying to get something to work.

... My example only has 2 addresses and 4 accesses, it
shouldn’t be this hard. Can you help?”

- Email from employee at major research lab

Formal specification for relaxed atomics is a longstanding problem
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Why Use Relaxed Atomics?

 But generally use simple, SW-based coherence
— Cost of staying away from relaxed atomics too high!



Our Approach

* Previous work

— Goal: formal semantics for all possible relaxed atomics uses
— Unsuccessful despite ~15 years of effort

* Insight: analyze how real codes use relaxed atomics

— What are common uses of relaxed atomics?
— Why do they work?
— Can we formalize semantics for them?



Contributions [ISCA ‘17]

* |dentified common uses of relaxed atomics
— Work queues, event counters, ref counters, seqglocks, ...

 Data-race-free-relaxed (DRFrlx) memory model:
— Sequentially consistent (SC) centric semantics + efficiency

 Evaluated benefits of using relaxed atomics
— Up to 53% less cycles (33% avg), 40% less energy (20% avg)

Everyone can safely use RAts



Motivation
Background
Data-race-free-relaxed
Results

Conclusion



Atomics Background

 Default: Data-race-free-0 (DRFO0) [ISCA ‘90]

— ldentify all races as synchronization accesses (C++: atomics)

// each thread
fori=0:n

ADD R4, Ali], R1 synch (atomic)
ADD R5, B[i], R1 synch (atomic)

— All atomics order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races



Atomics Background (Cont.)

 Default: Data-race-free-0 (DRFO0) [ISCA ‘90]
— All atomics order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

 Data-race-free-1 (DRF1): unpaired atomics [TPDS ‘93]
+ Unpaired atomics do not order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

* Relaxed atomics [PLDI ‘08]

+ Do not order data or other atomics
—But can violate SC and no formal specification



Motivation
Background
Data-race-free-relaxed
Results

Conclusion

10



Identifying Relaxed Atomic Use Cases

* Our Approach

— What are common uses of relaxed atomics?
— Why do they work?
— Can we formalize semantics for them?

» Contacted vendors, developers, and researchers

Work Queues  Seqlocks

Ref counte\‘S

% Split Counters

How do relaxed atomics work in Event Counters?
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Event Counter

L2 Cache

* Threads concurrently update counters
— Read part of a data array, updates its counter
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Event Counter (Cont.)

L2 Cache unters

* Threads concurrently update counters

— Read part of a data array, updates its counter
— Increments race, so have to use atomics
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Event Counter (Cont.)

L2 Cache unters

* Threads concurrently update counters

— Read part of a data array, updates its counter
— Increments race, so have to use atomics

Commutative increments: order does not affect final result
How to formalize?
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Incorporating Commutativity Into DRFrix

* New relaxed atomic category: commutative

 Formalism:
— Accesses are commutative
— Intermediate values must not be observed

—Final result is always SC

What about the other use cases?
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Incorporating Other Use Cases Into DRFrix

qQueves  Seqlocys

Work
ters
g\a(}s Ref Coun
Split Counters

Use Case Category Semantics

Work Queues Unpaired SC
Flags Non-Ordering

Event Counters| Commutative Final result always SC

Seqlocks Speculative
Ref Counters Quantum | SC-centric: non-SC parts isolated

Split Counters
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Evaluation Methodology

* 1 CPU core + 15 GPU compute units (CU)

— Each node has private L1, scratchpad, tile of shared L2

* Simulation Environment
— GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

« Study DRFO, DRF1, DRFrix w/ GPU & DeNovo coherence
» Workloads

— Microbenchmarks for each use case
 Relaxed atomics help a little (Avg: 10% cycles, 5% energy)

— Benchmarks with biggest RAts speedups on discrete GPU
« UTS, PageRank (PR), Betweeness Centrality (BC)

18



Relaxed Atomics Applications — Execution Time

100%

80% H G0 = GPU coherence + DRF0

m G1 = GPU coherence + DRF1

M GRIx = GPU coherence + DRFrlx

H DO = DeNovo coherence + DRF0
H D1 = DeNovo coherence + DRF1
20% W DRIX = DeNovo coherence + DRFrix

60%

40%

0%
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Relaxed Atomics Applications — Execution Time

HG0O B G1

BGRIx H DO W D1 HDRIx

100%

80%

60%

40%

20%

0%

UTS PR-1 PR-2 PR-3 PR-4 " BC1  BC-2 " BC3  BC4 AVG

Relaxed atomics reduce cycles up to ~50%
DeNovo increases reuse over GPU: 10% avg. for DRFrix
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Relaxed Atomics Applications — Energy

Energy similar to execution time trends

104
UTS

PR-1

PR-2

PR-3

PR-4

BC-1

EN/W mL2S ' L1DS mScratch m GPU Core+
IujH Il £ Qﬂ |
__________________ Iy i |ARERRIENRNE]

BC-3

DeNovo’s reuse reduces energy over GPU: 29% avg. for DRFrix
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Conclusion

 Cost of avoiding relaxed atomics too high
* Difficult to use correctly: no formal specification
* Insight: Analyze how real codes use relaxed atomics

| DRFrix: SC-centric semantics + efficiency

Everyone can safely use RAts
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BACKUP
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Consistency is Complex

“If you think you understand quantum computers, it's
because you don’t. Quantum computing is actually
harder than memory consistency models.”

- Luis Ceze, video in ISCA ‘16 Keynote

Memory consistency: gold standard for complexity

Relaxed atomics add even more complexity
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Consistency is Complex

How hard are consistency models?

Memory consistency: gold standard for complexity



Atomics in Data-Race-Free-0 (DRFO0)

// each thread
Fuslidditty for i = start:end
alddéda . ' H
ATOM.ADD R4, Afi], R1 1
ATOM.ADD R5, B[i], R1 H
Bank .

Interconnection n/w

+ Default; DRFO0 [ISCA ‘90]

— All atomics order data accesses
— Atomics order other atomics

—Ensures SC semantics

Precludes data reuse and overlapping atomics
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Atomics in Data-Race-Free-1 (DRF1)

No // each thread
invalidations | Dirty: fori = start:end
or flushes —
ATOM.ADD R4, Ali], R1 MUnP
L2 Cache ATOM.ADD R5, B[i], R1 MUnP
Bank ]

Interconnection n/w

 Unpaired atomics do not order any data accesses
+ Avoids invalidations and flushes
— Atomics order other atomics

—Ensures SC semantics

Can reuse data but cannot overlap atomics
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Relaxed Atomics

No // each thread
invalidations L. fori = start:end
or flushes —
ATOM.ADD R4, Afi], R1 MRLX
L2 Cache ATOM.ADD R5, B[i], R1 MRLX
Bank ]

Interconnection n/w

* Relaxed atomics do not order data or other atomics
+ Reorder, overlap with all other memory accesses

But can violate SC and no formal specification
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Split Counter

L2 Cache unters

* Threads simultaneously access counters

— Some threads update their counter
— Other threads read all counters to get the current partial sum
— Counter accesses race, so must use atomics
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Quantum - Split Counter (Cont.)

« Can reorder, overlap relaxed atomics from same thread
— Results may not be SC - programmers ok with approx values

* DRFrix

— Distinguish quantum atomics
* Quantum atomic loads logically return approximate value

— Program is DRFrix if DRF1 and no races in new program
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Relaxed Atomics on Discrete GPUs

H Min B Max

M Average

Cost of staying away too high!
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Incorporati
Ing Other Use C
ases Into DRF
rix

9V S

Reference Counters

S .
% plit Counters
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Incorporating Other Use Cases Into DRFrix

Work Queues Seqlocks

Reference Counters

Flags Split Counters

Use Case Category Semantics
Work Queues Unpaired

SC
Flags Non-Ordering

Event Counters| Commutative _
_ Final result always SC
Seqlocks Speculative

Ref Counters
Quantum | SC-centric: non-SC parts isolated

Split Counters
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Relaxed Atomics Microbenchmarks — Execution Time

100%

B GD0 =GPUcoherence + DRF(
®m GD1 =GPU coherence + DRF1

80%

60% B GDR = GPU coherence + DRFrix
B DD0 =DeNovo coherence + DRF(
40% B DD1 =DeNovo coherence + DRF1

B DDR = DeNovo coherence + DRFrix

20%

0%
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Relaxed Atomics Microbenchmarks — Execution Time

EGD0 M GD1 MGDR HDD0 W DD1
HG H HG-NO  Flags sC RC SEQ AVG
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Weakening the consistency model does not significantly improve perf
DRFrix allows atomics to be overlapped (7% avg improvement for GPU)

35



Relaxed Atomics Microbenchmarks — Execution Time

BGD0 M GD1 MGDR EDD0O B DD1 M DDR

HG H HG-NO Flags SC RC SEQ AVG
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Weakening the consistency model does not significantly improve perf
DRFrix allows atomics to be overlapped (7% avg improvement for GPU)
DeNovo exploits synch reuse, outperforms GPU (DRFrix: 10% avg)
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Relaxed Atomics Microbenchmarks — Energy

HG H HG-NO Flags SC RC SEQ AVG
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Energy trends somewhat similar to execution time
DRFrix: DeNovo reduces energy by 4% over GPU

37



Relaxed Atomics Applications — Execution Time

EGD0 B GD1 MGDR HDD0O W DD1
UTS PR-1 PR2 PR3 PR4 BC1l BC2 BC3 BC4 AVG
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Weakening memory model helps a lot (up to 51% for GPU)
DRF1 increases data reuse (21% avg vs. GDO0)

DRFrix overlaps atomics (15% avg vs. GD1)
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DRFrix Summary

* New relaxed atomic type for each category

— Formalize when an atomic falls into category
— SC(-centric) semantics if use relaxed atomics correctly

Strongest (SC)

Unpaired SC: Reorder unpaired with data accesses

Non-Ordering SC: atomics do not order other accesses

Commutative Final result always SC
Speculative Final result always SC (retry violations)
Quantum Isolate non-SC parts

Weakest (SC-centric)
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