Chasing Away RAts: Semantics and Evaluation
for Relaxed Atomics on Heterogeneous Systems

Matthew D. Sinclair’, Johnathan Alsop”, Sarita V. Adve*

* University of Wisconsin-Madison
A AMD Research
+ University of lllinois @ Urbana-Champaign
sinclair@cs.wisc.edu, hetero@cs.illinois.edu

Sponsors: NSF and Center for Future Architectures Research
(C-FAR) Research center (co-sponsored by SRC and DARPA)

mailto:hetero@cs.illinois.edu
mailto:hetero@cs.illinois.edu

“Everyone (thinks they) can eeek” use relaxed atomics (RAts)

Correctness Health-cede violations:
Incorrect usage % No formal definition % Not portable

- Hard to debug % Out-of-thin-air values*

No Formal Specification for Relaxed Atomics

C++17 "specification" for relaxed atomics

Races that don't order other accesses
Implementations should ensure no “out-of-thin-air”

«FUVRURSA IR LA ST ARy H9nea< o4 thligwn
sHRMAILYnd days) trying to get something to work.

... My example only has 2 addresses and 4 accesses, it
shouldn’t be this hard. Can you help?”

- Email from employee at major research lab

Formal specification for relaxed atomics is a longstanding problem

3

Why Use Relaxed Atomics?

 But generally use simple, SW-based coherence
— Cost of staying away from relaxed atomics too high!

Our Approach

* Previous work

— Goal: formal semantics for all possible relaxed atomics uses
— Unsuccessful despite ~15 years of effort

* Insight: analyze how real codes use relaxed atomics

— What are common uses of relaxed atomics?
— Why do they work?
— Can we formalize semantics for them?

Contributions [ISCA ‘17]

* |dentified common uses of relaxed atomics
— Work queues, event counters, ref counters, seqglocks, ...

 Data-race-free-relaxed (DRFrlx) memory model:
— Sequentially consistent (SC) centric semantics + efficiency

 Evaluated benefits of using relaxed atomics
— Up to 53% less cycles (33% avg), 40% less energy (20% avg)

Everyone can safely use RAts

Motivation
Background
Data-race-free-relaxed
Results

Conclusion

Atomics Background

 Default: Data-race-free-0 (DRFO0) [ISCA ‘90]

— ldentify all races as synchronization accesses (C++: atomics)

// each thread
fori=0:n

ADD R4, Ali], R1 synch (atomic)
ADD R5, B[i], R1 synch (atomic)

— All atomics order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

Atomics Background (Cont.)

 Default: Data-race-free-0 (DRFO0) [ISCA ‘90]
— All atomics order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

 Data-race-free-1 (DRF1): unpaired atomics [TPDS ‘93]
+ Unpaired atomics do not order data accesses
— Atomics order other atomics
—Ensures SC semantics if no data races

* Relaxed atomics [PLDI ‘08]

+ Do not order data or other atomics
—But can violate SC and no formal specification

Motivation
Background
Data-race-free-relaxed
Results

Conclusion

10

Identifying Relaxed Atomic Use Cases

* Our Approach

— What are common uses of relaxed atomics?
— Why do they work?
— Can we formalize semantics for them?

» Contacted vendors, developers, and researchers

Work Queues Seqlocks

Ref counte\‘S

% Split Counters

How do relaxed atomics work in Event Counters?

11

Event Counter

L2 Cache

* Threads concurrently update counters
— Read part of a data array, updates its counter

12

Event Counter (Cont.)

L2 Cache unters

* Threads concurrently update counters

— Read part of a data array, updates its counter
— Increments race, so have to use atomics

13

Event Counter (Cont.)

L2 Cache unters

* Threads concurrently update counters

— Read part of a data array, updates its counter
— Increments race, so have to use atomics

Commutative increments: order does not affect final result
How to formalize?

14

Incorporating Commutativity Into DRFrix

* New relaxed atomic category: commutative

 Formalism:
— Accesses are commutative
— Intermediate values must not be observed

—Final result is always SC

What about the other use cases?

15

Incorporating Other Use Cases Into DRFrix

qQueves Seqlocys

Work
ters
g\a(}s Ref Coun
Split Counters

Use Case Category Semantics

Work Queues Unpaired SC
Flags Non-Ordering

Event Counters| Commutative Final result always SC

Seqlocks Speculative
Ref Counters Quantum | SC-centric: non-SC parts isolated

Split Counters

16

Motivation
Background
Data-race-free-relaxed
Results

Conclusion

17

Evaluation Methodology

* 1 CPU core + 15 GPU compute units (CU)

— Each node has private L1, scratchpad, tile of shared L2

* Simulation Environment
— GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

« Study DRFO, DRF1, DRFrix w/ GPU & DeNovo coherence
» Workloads

— Microbenchmarks for each use case
 Relaxed atomics help a little (Avg: 10% cycles, 5% energy)

— Benchmarks with biggest RAts speedups on discrete GPU
« UTS, PageRank (PR), Betweeness Centrality (BC)

18

Relaxed Atomics Applications — Execution Time

100%

80% H G0 = GPU coherence + DRF0

m G1 = GPU coherence + DRF1

M GRIx = GPU coherence + DRFrlx

H DO = DeNovo coherence + DRF0
H D1 = DeNovo coherence + DRF1
20% W DRIX = DeNovo coherence + DRFrix

60%

40%

0%

19

Relaxed Atomics Applications — Execution Time

HG0O B G1

BGRIx H DO W D1 HDRIx

100%

80%

60%

40%

20%

0%

UTS PR-1 PR-2 PR-3 PR-4 " BC1 BC-2 " BC3 BC4 AVG

Relaxed atomics reduce cycles up to ~50%
DeNovo increases reuse over GPU: 10% avg. for DRFrix

20

100% -

80% -

60%

40%

20%

0%

Relaxed Atomics Applications — Energy

Energy similar to execution time trends

104
UTS

PR-1

PR-2

PR-3

PR-4

BC-1

EN/W mL2S ' L1DS mScratch m GPU Core+
IujH Il £ Qﬂ |
__________________ Iy i |ARERRIENRNE]

BC-3

DeNovo’s reuse reduces energy over GPU: 29% avg. for DRFrix

21

Conclusion

 Cost of avoiding relaxed atomics too high
* Difficult to use correctly: no formal specification
* Insight: Analyze how real codes use relaxed atomics

| DRFrix: SC-centric semantics + efficiency

Everyone can safely use RAts

22

BACKUP

23

Consistency is Complex

“If you think you understand quantum computers, it's
because you don’t. Quantum computing is actually
harder than memory consistency models.”

- Luis Ceze, video in ISCA ‘16 Keynote

Memory consistency: gold standard for complexity

Relaxed atomics add even more complexity

24

Consistency is Complex

How hard are consistency models?

Memory consistency: gold standard for complexity

Atomics in Data-Race-Free-0 (DRFO0)

// each thread
Fuslidditty for i = start:end
alddéda . ' H
ATOM.ADD R4, Afi], R1 1
ATOM.ADD R5, B[i], R1 H
Bank .

Interconnection n/w

+ Default; DRFO0 [ISCA ‘90]

— All atomics order data accesses
— Atomics order other atomics

—Ensures SC semantics

Precludes data reuse and overlapping atomics

26

Atomics in Data-Race-Free-1 (DRF1)

No // each thread
invalidations | Dirty: fori = start:end
or flushes —
ATOM.ADD R4, Ali], R1 MUnP
L2 Cache ATOM.ADD R5, B[i], R1 MUnP
Bank]

Interconnection n/w

 Unpaired atomics do not order any data accesses
+ Avoids invalidations and flushes
— Atomics order other atomics

—Ensures SC semantics

Can reuse data but cannot overlap atomics

27

Relaxed Atomics

No // each thread
invalidations L. fori = start:end
or flushes —
ATOM.ADD R4, Afi], R1 MRLX
L2 Cache ATOM.ADD R5, B[i], R1 MRLX
Bank]

Interconnection n/w

* Relaxed atomics do not order data or other atomics
+ Reorder, overlap with all other memory accesses

But can violate SC and no formal specification

28

Split Counter

L2 Cache unters

* Threads simultaneously access counters

— Some threads update their counter
— Other threads read all counters to get the current partial sum
— Counter accesses race, so must use atomics

29

Quantum - Split Counter (Cont.)

« Can reorder, overlap relaxed atomics from same thread
— Results may not be SC - programmers ok with approx values

* DRFrix

— Distinguish quantum atomics
* Quantum atomic loads logically return approximate value

— Program is DRFrix if DRF1 and no races in new program

30

Relaxed Atomics on Discrete GPUs

H Min B Max

M Average

Cost of staying away too high!

31

Incorporati
Ing Other Use C
ases Into DRF
rix

9V S

Reference Counters

S .
% plit Counters

32

Incorporating Other Use Cases Into DRFrix

Work Queues Seqlocks

Reference Counters

Flags Split Counters

Use Case Category Semantics
Work Queues Unpaired

SC
Flags Non-Ordering

Event Counters| Commutative _
_ Final result always SC
Seqlocks Speculative

Ref Counters
Quantum | SC-centric: non-SC parts isolated

Split Counters

33

Relaxed Atomics Microbenchmarks — Execution Time

100%

B GD0 =GPUcoherence + DRF(
®m GD1 =GPU coherence + DRF1

80%

60% B GDR = GPU coherence + DRFrix
B DD0 =DeNovo coherence + DRF(
40% B DD1 =DeNovo coherence + DRF1

B DDR = DeNovo coherence + DRFrix

20%

0%

34

Relaxed Atomics Microbenchmarks — Execution Time

EGD0 M GD1 MGDR HDD0 W DD1
HG H HG-NO Flags sC RC SEQ AVG

100%

80%

60%

40%

20%

0%
O « X
aaao
©0O0

GDO
GD1
GDR
GDO
GD1
GDR

o = o wx © - x o - x
[a = R¥a [a =) 0O 0Q 00N
0O 0o 000 000 (VRN G)

GDO
GD1
GDR

Weakening the consistency model does not significantly improve perf
DRFrix allows atomics to be overlapped (7% avg improvement for GPU)

35

Relaxed Atomics Microbenchmarks — Execution Time

BGD0 M GD1 MGDR EDD0O B DD1 M DDR

HG H HG-NO Flags SC RC SEQ AVG

104 1
103 103 06101

100%
80%
60%
40%
20%

0%

Weakening the consistency model does not significantly improve perf
DRFrix allows atomics to be overlapped (7% avg improvement for GPU)
DeNovo exploits synch reuse, outperforms GPU (DRFrix: 10% avg)

36

Relaxed Atomics Microbenchmarks — Energy

HG H HG-NO Flags SC RC SEQ AVG
EN/W mL2S L1 DS mScratch m GPU Core+

103101
100% -]—I—I _I
8% 4B |||III
60% + —— —H1+ 11 HHHEHEH R — — — — — i
40% + — — — — — 1
20% + — — — — — 1
0% ‘I-V-I-V-I-rl'v-l-rl m = = = = om

GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR
GDO
GD1
GDR
DDO
DD1
DDR

Energy trends somewhat similar to execution time
DRFrix: DeNovo reduces energy by 4% over GPU

37

Relaxed Atomics Applications — Execution Time

EGD0 B GD1 MGDR HDD0O W DD1
UTS PR-1 PR2 PR3 PR4 BC1l BC2 BC3 BC4 AVG

100%

80%

60%

40%

20%

0%

Weakening memory model helps a lot (up to 51% for GPU)
DRF1 increases data reuse (21% avg vs. GDO0)

DRFrix overlaps atomics (15% avg vs. GD1)

38

DRFrix Summary

* New relaxed atomic type for each category

— Formalize when an atomic falls into category
— SC(-centric) semantics if use relaxed atomics correctly

Strongest (SC)

Unpaired SC: Reorder unpaired with data accesses

Non-Ordering SC: atomics do not order other accesses

Commutative Final result always SC
Speculative Final result always SC (retry violations)
Quantum Isolate non-SC parts

Weakest (SC-centric)

39

