

Arm Summit 2018
18 September 2018: Printed Electronics

Development of Printed Solar Biobattery for Use in Bioelectronics

Dr. Marin Sawa (Imperial College London) m.sawa@imperial.ac.uk

The thin-film biophotovoltaic technology

Sawa M, Fantuzzi-A, Bombelli P, Howe C-J, Hellgardt K, Nixon P-J, 2017. Electricity generation from digitally printed cyanobacteria, Nature Communications, 8(1), 1327

The Chemical Engineer

The cross-disciplinary collaborations

Imperial College Loddon

Dr. Andrea Fantuzzi (Electrochemist)

Prof. Klaus Hellgardt (Chemical engineer)

Prof. Peter Nixon (Biochemist)

University of Cambridge

Dr. Paolo Bombelli (Biochemist)

Prof. Christopher Howe (Biochemist)

Cyanobacteria and algae

Inkjet fabrication method

Cells and conductor printed in two separate steps

- Thermal
- 140 picolitre droplets
- 300 x 600 dpi
- CAD to CAM
- Uniform cell density

Low resolution by microvalve inkjet cell printer

Cell viability and photosynthetic competency

Printed cells on paper after 3 days growth

Chlorophyll fluorescence value 0.4

Imaging-PAM in further collaboration w/ Dr Petra
Ungerer, Prof Alexander Ruban group (Queen Mary) +

Solid and liquid culture systems

Digitally printed solid system Synechocystis WT 0.38 mW m⁻² (Sawa et al. 2017)

Synechocystis WT 0.2–0.3 mW m⁻² (McCormick et al. 2011)

Electron generation and transport pathways

Solar biobattery (PoC)

- 1: Inkjet-printable thin-film technology (semi-dry system)
- 2: Paper-based, biodegradable, cost effective
- 3: Current production in the dark (biobattery)
- 4: Power output 0.012 mW m^{-2,} >100 hrs

Parameter: cathodic oxygen reduction

1: Hybrid system, digitally printed bioanode + Pt-carbon cathode

2: Current Power output of 0.38 mW m⁻² (light) & 0.22 mW m⁻² (dark)

3: Powering of digital clock:

overall voltage output of 1.4–1.5 V & overall current output of 1.5–2 μA

Parameter: biocompatibility

1: Substrate (porosity)

2: Conductor (porosity, cell-surface interaction)

Printed cells after 33 days growth

Parameter: species

6803 wt vs Lyptolymbya (biofilm)

Chronoamperometry (200mV bias), Dark/light (300s/300s), Ca. 500 uE m-2 s-1 (white LED) Anode(12cm2, ITO), open air cathode(C-Pt).

Unpublished data

We are very interested in understanding alternative energy-harvesting techniques to power our ultra-low power loT circuits and CPUs. In particular, we would like to develop know-how and knowledge through collaboration and partnership on how to power the future biomedical/non-biomedical loT devices using low-cost, environment-friendly, biodegradable, form-factor efficient biological energy storage systems such as microbial cells and biophotovoltaics.

Dr. Emre Ozer, Principal Research Engineer

Takeaways

- Successful inkjet printing of cells using thermal inkjet
- Parameters to be tested: species,
 biocompatibility, cathodic oxygen catalyst
- Tackle e-Wastes

