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Tiny Hardware
• ~50 billion MCU chips shipped in ’19

• ~100 million GPUs in ’18

• Severe memory limitations
• Limited flash memory —> limited 

model size
• Limited SRAM —> limited feature map 

size

• LeNet for MNIST
• 420 KB flash
• 12 KB SRAM

• “Bonsai is not compared to deep 
convolutional neural networks as they 
have not yet been demonstrated to fit 
on such tiny IoT devices” [2]

• “Consider a typical IoT device that has ≤ 
32kB RAM and a 16MHz processor. 
Most existing ML models cannot be 
deployed on such tiny devices” [3]

[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. NeurIPS ’19
[2] Kumar et al. Resource-efficient machine learning in 2 kb ram for the internet of things. ICML ’17
[3] Gupta et al. Protonn: Compressed and accurate knn for resource-scarce devices. ICML ‘17
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Can we design the model for the device?

[4] David et al. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. MLSys ’21
[5] Lin et al. MCUNet: Tiny Deep Learning on IoT Devices. NeurIPS ’21

Research papers

• Is the source 
code 
publicly 
available?

• What are 
the compute 
resources 
required?

Deep learning training 
software
• Tensorflow
• Pytorch
• etc.

Deployment tool
• TFlite-micro [4]
• TinyEngine [5] Hardware

• Are all of the 
operators 
supported?

• All of 
compute 
graphs / 
structures?

• What 
features are 
supported?
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Algorithmic Tools
• Quantization

• Int8 cheaper than float (storage + 
compute)

• Sub int8 not supported by HW
• Pruning

• Structured pruning 
– HW friendly
– Reduces ops
– Limited compression benefits 

• Unstructured / random pruning
– Not HW friendly unless 

extreme
– Large compression benefits

• Neural architecture search
– Operators, connectivity, layer 

width, resolution, etc.
– Computationally demanding
– Not all computational graphs 

supported by deployment 
tools

• Learn from the HW directly
• HW model, or
• HW interface
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Quantization
• Float —> int8 (weights + activations)

• 4x reduction in model size
• 4x reduction in feature map size
• Cheaper computation

• Sub 8-bit and non-uniform not supported by HW

• 𝑄𝑄 𝑤𝑤 = 𝑠𝑠 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤,−𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

𝑠𝑠 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
28−1−1

[6]

• How to select 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ? Depends…

• If training data is available
• Post-training calibration [7]
• Quantization aware training [8]

• Treat 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 as a variable and 
optimize by GD on the task 
objective

• Two dependencies on 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
• Straight through estimator

• If no training data, still have options 
[9]

[6] https://intellabs.github.io/distiller/algo_quantization.html
[7] https://www.tensorflow.org/lite/performance/post_training_quantization
[8] Jain et al., Trained Quantization Thresholds for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks. MLSys ’20
[9] Nagel et al., Data-Free Quantization Through Weight Equalization and Bias Correction. ArXiv ‘19

https://intellabs.github.io/distiller/algo_quantization.html
https://www.tensorflow.org/lite/performance/post_training_quantization
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Pruning
• Unstructured [10] vs structured [11]

• Can the HW benefit from highly compressed weights?
• Sparsity promoting regularization —> drive the weights to 0

• How to pick number of non-zeros per layer?
• Reinforcement learning [12]

• Gradient based [13]
– 𝑤𝑤 ← 𝑤𝑤 × 1𝑤𝑤>𝜏𝜏 ,approximate indicator by sigmoid 

during backdrop
• Rank —> pruned —> retrain —> (repeat)

• Magnitude [14], minimal influence on objective [15]
[10] Molchanov et al. Variational dropout sparsifies deep neural networks. ICML ‘17
[11] Louizos et al. Bayesian compression for deep learning. NeurIPS ’17
[12] He et al. AMC: AutoML for Model Compression and Acceleration on Mobile Devices. ECCV ’18
[13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech ‘20

[14] Han et al. Deep Compression: Compressing Deep 
Neural Networks with Pruning, Trained Quantization and 
Huffman Coding. ICLR ’16
[15] Molchanov et al. Importance Estimation for Neural 
Network Pruning. CVPR ’19
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Neural architecture search

• The search strategy
• Black box (RL, Bayesian optimization, genetic alg., etc.) [16] vs gradient based [17]
• Hardware model —> do we need it, or is there a viable proxy?

• Estimation strategy
• Computationally expensive —> thousands of GPU days in some cases 
• Weight sharing
• Morphisms

• The distinction between quantization / pruning and NAS is arbitrary [18]

[16] Elsken et al. Neural Architecture Search: A Survey. JMLR ’19
[17] Liu et al. DARTS: Differentiable Architecture Search. ICLR ’19
[18] Cai and Vasconcelos. Rethinking Differentiable Search for Mixed-Precision Neural Networks. CVPR ‘20
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A few examples and lessons from our work
SpArSe [1]

• Multi-objective Bayesian optimization
• Architecture, channel / weight pruning thresholds, 

training hyperparameters
• Closed form memory model

• SRAM usage modeled by sum of input and 
output tensors for each layer

• Able to deploy to devices previously thought too 
small for NNs

• The deployment tool (uTensor) only supported 
feed-toward graphs

• Bayesian optimization is slow, even with “tricks” to 
speed it up —> 10 GPU days on CIFAR10-binary

[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. 
NeurIPS ’19
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A few examples and lessons from our work

TinyLSTMs [13]
• Speech denoising using LSTMs
• Latency constraint w/ ops proxy
• Neuron pruning to reduce ops

• Gradient based threshold learning 
for efficiency

• Quantization to run w/ integer math
• LSTMs were not supported by TFlite-

micro

[13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech ‘20
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A few examples and lessons from our work

MicroNets [19]
• Differentiable NAS
• Commodity MCU target
• 3 TinyMLperf datasets
• Optimize for Flash, SRAM, ops —> 

good proxy for latency on MCUs
• Search cost on the order of hours
• TFlite-micro deployment tool
• Memory overheads difficult to 

predict

[19] Banbury et al. MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity 
Microcontrollers. MLsys ’21
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