
© 2021 Arm

Igor Fedorov

April 9, 2021

TinyML Model Design
2nd On-Device Intelligence Workshop @ MLSys 2021 

Arm ML Research Lab



2 © 2021 Arm

Tiny Hardware
• ~50 billion MCU chips shipped in ’19

• ~100 million GPUs in ’18

• Severe memory limitations
• Limited flash memory —> limited 

model size
• Limited SRAM —> limited feature map 

size

• LeNet for MNIST
• 420 KB flash
• 12 KB SRAM

• “Bonsai is not compared to deep 
convolutional neural networks as they 
have not yet been demonstrated to fit 
on such tiny IoT devices” [2]

• “Consider a typical IoT device that has ≤ 
32kB RAM and a 16MHz processor. 
Most existing ML models cannot be 
deployed on such tiny devices” [3]

[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. NeurIPS ’19
[2] Kumar et al. Resource-efficient machine learning in 2 kb ram for the internet of things. ICML ’17
[3] Gupta et al. Protonn: Compressed and accurate knn for resource-scarce devices. ICML ‘17



3 © 2021 Arm

Can we design the model for the device?

[4] David et al. TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems. MLSys ’21
[5] Lin et al. MCUNet: Tiny Deep Learning on IoT Devices. NeurIPS ’21

Research papers

• Is the source 
code 
publicly 
available?

• What are 
the compute 
resources 
required?

Deep learning training 
software
• Tensorflow
• Pytorch
• etc.

Deployment tool
• TFlite-micro [4]
• TinyEngine [5] Hardware

• Are all of the 
operators 
supported?

• All of 
compute 
graphs / 
structures?

• What 
features are 
supported?



4 © 2021 Arm

Algorithmic Tools
• Quantization

• Int8 cheaper than float (storage + 
compute)

• Sub int8 not supported by HW
• Pruning

• Structured pruning 
– HW friendly
– Reduces ops
– Limited compression benefits 

• Unstructured / random pruning
– Not HW friendly unless 

extreme
– Large compression benefits

• Neural architecture search
– Operators, connectivity, layer 

width, resolution, etc.
– Computationally demanding
– Not all computational graphs 

supported by deployment 
tools

• Learn from the HW directly
• HW model, or
• HW interface



5 © 2021 Arm

Quantization
• Float —> int8 (weights + activations)

• 4x reduction in model size
• 4x reduction in feature map size
• Cheaper computation

• Sub 8-bit and non-uniform not supported by HW

• 𝑄𝑄 𝑤𝑤 = 𝑠𝑠 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤,−𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚,𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠

𝑠𝑠 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
28−1−1

[6]

• How to select 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ? Depends…

• If training data is available
• Post-training calibration [7]
• Quantization aware training [8]

• Treat 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 as a variable and 
optimize by GD on the task 
objective

• Two dependencies on 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚
• Straight through estimator

• If no training data, still have options 
[9]

[6] https://intellabs.github.io/distiller/algo_quantization.html
[7] https://www.tensorflow.org/lite/performance/post_training_quantization
[8] Jain et al., Trained Quantization Thresholds for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks. MLSys ’20
[9] Nagel et al., Data-Free Quantization Through Weight Equalization and Bias Correction. ArXiv ‘19

https://intellabs.github.io/distiller/algo_quantization.html
https://www.tensorflow.org/lite/performance/post_training_quantization


6 © 2021 Arm

Pruning
• Unstructured [10] vs structured [11]

• Can the HW benefit from highly compressed weights?
• Sparsity promoting regularization —> drive the weights to 0

• How to pick number of non-zeros per layer?
• Reinforcement learning [12]

• Gradient based [13]
– 𝑤𝑤 ← 𝑤𝑤 × 1𝑤𝑤>𝜏𝜏 ,approximate indicator by sigmoid 

during backdrop
• Rank —> pruned —> retrain —> (repeat)

• Magnitude [14], minimal influence on objective [15]
[10] Molchanov et al. Variational dropout sparsifies deep neural networks. ICML ‘17
[11] Louizos et al. Bayesian compression for deep learning. NeurIPS ’17
[12] He et al. AMC: AutoML for Model Compression and Acceleration on Mobile Devices. ECCV ’18
[13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech ‘20

[14] Han et al. Deep Compression: Compressing Deep 
Neural Networks with Pruning, Trained Quantization and 
Huffman Coding. ICLR ’16
[15] Molchanov et al. Importance Estimation for Neural 
Network Pruning. CVPR ’19



7 © 2021 Arm

Neural architecture search

• The search strategy
• Black box (RL, Bayesian optimization, genetic alg., etc.) [16] vs gradient based [17]
• Hardware model —> do we need it, or is there a viable proxy?

• Estimation strategy
• Computationally expensive —> thousands of GPU days in some cases 
• Weight sharing
• Morphisms

• The distinction between quantization / pruning and NAS is arbitrary [18]

[16] Elsken et al. Neural Architecture Search: A Survey. JMLR ’19
[17] Liu et al. DARTS: Differentiable Architecture Search. ICLR ’19
[18] Cai and Vasconcelos. Rethinking Differentiable Search for Mixed-Precision Neural Networks. CVPR ‘20



8 © 2021 Arm

A few examples and lessons from our work
SpArSe [1]

• Multi-objective Bayesian optimization
• Architecture, channel / weight pruning thresholds, 

training hyperparameters
• Closed form memory model

• SRAM usage modeled by sum of input and 
output tensors for each layer

• Able to deploy to devices previously thought too 
small for NNs

• The deployment tool (uTensor) only supported 
feed-toward graphs

• Bayesian optimization is slow, even with “tricks” to 
speed it up —> 10 GPU days on CIFAR10-binary

[1] Fedorov et al., SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers. 
NeurIPS ’19



9 © 2021 Arm

A few examples and lessons from our work

TinyLSTMs [13]
• Speech denoising using LSTMs
• Latency constraint w/ ops proxy
• Neuron pruning to reduce ops

• Gradient based threshold learning 
for efficiency

• Quantization to run w/ integer math
• LSTMs were not supported by TFlite-

micro

[13] Fedorov et al. TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids. Interspeech ‘20



10 © 2021 Arm

A few examples and lessons from our work

MicroNets [19]
• Differentiable NAS
• Commodity MCU target
• 3 TinyMLperf datasets
• Optimize for Flash, SRAM, ops —> 

good proxy for latency on MCUs
• Search cost on the order of hours
• TFlite-micro deployment tool
• Memory overheads difficult to 

predict

[19] Banbury et al. MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity 
Microcontrollers. MLsys ’21

KWS VWW


	TinyML Model Design
	Tiny Hardware
	Can we design the model for the device?
	Algorithmic Tools
	Quantization
	Pruning
	Neural architecture search
	A few examples and lessons from our work
	A few examples and lessons from our work
	A few examples and lessons from our work

