uNIversiTE DE WA

=

VERSAILLES @w=>

SAINT-QUENTIN-EN-YVELINES

Lovang AR S FOR AARCH64 ARCHITECTURES

Hugo BOLLORE - hugo.bollore@uvsg.fr

ARM RESEARCH SUMMIT 2018 — September 17-19 — Cambridge, UK

mailto:hugo.bollore@uvsq.fr

SUMMARY

= The MAQAOQO framework, a performance analysis and optimisation tool
= Static capabilities and the Code Quality Analyzer module

" Port for ARM 64-bit applications

= Using MAQAO to study ARM HPC compiler vectorisation

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 2

MAQAO: Modular Assembly Quality Analyzer and Optimizer

= Obijectives:

® Characterizing performance of applications

= Focusing on performance at the core level

= Guiding users through optimisation process
= Characteristics:

® Modular tool offering complementary views

= Support for x86-64, Xeon Phi, AArché4 architectures
® LGPL3 Open Source software

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 3

MAQAOQO: Analysis at binary level

= Advantages:
= Takes into account compilers optimisations/transformations and ISA specificities
= Allows evaluation of the executed binary code
= No recompilation necessary

= Requirements:

= Debug information to correlate analyses with source code

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 4

MAQAO: STRUCTURE

" LProf (Lightweight Profiler): A sampling based profiler for identifying
application hotspots.

" VProf (Value Profiler): A dynamic value profiler. Extracts parameter
values from subroutine calls.

= DECAN (DECremental Analyzer):A binary rewriting system to
evaluate performance impact of specific sequences of instructions.

= OneView (Performance Views Aggregator): A module automating the
analysis process by driving the other modules, aggregating the results
in a hierarchical way, and providing useful hints to restructure code.

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

CQA: Code Quality Analyzer

= Goal: Assist developers in improving code performance
= Features:

= Evaluates the quality of the compiler generated code
= Returns hints and workarounds to improve quality

= Targets compute-bound codes

= Static analysis:

= Requires no execution of the application

= Allows cross-platform analyses

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 6

CQA: Motivating example

do j = ni + nvaluet, natox 6) Variable number of iterations

" nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue Source code and associated issues

ul =x11 =x(nj1) ; u2 = x12 —=x(nj2) ; u3 = x13 - x(nj3) <—|
rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j) .

gr(nj1, thread_num) = gr(nj1, thread_num) + ulg

gr(nj2, thread_num) = gr(nj2, thread_num) + u2g J« 2) Non-unit stride accesses
gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

£ i fij = demi*(rvwi + rvwalc1(j)) 2) Non-unit stride accesses X

£ 1 drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2) '

% | ntj =nti + ntype()) '

< ' Ed = ceps(ntj)*drtest2*drtest2*drtest2 , 4.

é ' Eqc= Eqc# Eq : Ephob = Ephob # Ed 3) Indirect accesses

3 1+ gE=(c6"Ed + Eq)*drtest2 ; virt = virt# gE*rtest2 | (_ 5) Reductions 5. Reductions

5, + ulg=ul*gE ; u2g = u2*gk ; u3g = u3*gk

I : glc=glc-ulg;g2c=g2c—u2g; g3c=g3c-u3g 6. Variable number of iterations

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 7

CQA: Evaluation of compiler generated code

"""""" MAQAO [~~~ "~~~ 777 Tttt TTTTTT T CQA [T T =TT

Vectorization

____ratios)

Intra-iteration

[Arithmetic/FP
___ratios)

Inter-iteration

Potential

(__ speed-up

~

H’H
H'-EH
> Fronend |

Pipeline Dependencies : :
Metrics & hint
simulation analyses \ etries & s/

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 8

p
Compilation

_ flags

Binary layer Analysis layer

CQA:Application on Motivating Example

L Gain | Potential gain | Hints | Experts only |

Your loop is partially vectorized.

Only 28% of vector register length is used (average across all SSE/AVX instructions).

By fully vectorizing your loop, you can lower the cost of an iteration from 57.00 to 21.50 cycles (2.65x speedup).
51% of SSE/AVX instructions are used in vector version (process two or more data elements in vector registers):

® 24% of SSE/AVX loads are used in vector version.
* 0% of SSE/AVX stores are used in vector version.

Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

* Try another compiler or update/tune your current one:
o use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences”, try
eTEVOEr airecuive. IT, using IVDEP, “vectorization possioie urse inefficient”, try the VECTOR ALWAYS directive.
* Remove inter-iterations dependences from your loop and make it unit-stride:
T yoeramayeshavasearmars.dimansianseahaslmwhetiver-eleMien(s are accessed corgyously and, otherwise, try to
permute loops accordingly:
Fortran storage order is column-major: do i do j a(i,j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = Sai) (fast, stride
1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA):
do i a(i)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Performangce.istimisad.bye

* execution of divide and square Wot operations (the divide/square root unit is a bottleneck)
» execution of INT/FP operations ir/ vector registers (the VPU is a bottleneck)

By removing all these bottlenecks, you can lower the cost of an iteration from 57.00 to 48.00 cycles (1.19x speedup).
Proposed solution(s):

* Reduce the number of division or square root instructions.
If denominator is constant over iterations, use reciprocal (replace x/y with x*(1/y)). Check precision impact. This will be
done by your compiler with no-prec-div or Ofast.
Check whether you really need double precision. If not, switch to single precision to speedup execution.

* Reduce arithmetical operations on array elements

Gain | Potential gain | Hints | Experts only

L

Detected 48 FMA (fused multiply-add) operations.
Rresence of both ADD/SUB and MUL operations.

Proposed solaaoins):

Try to change order in which elements are evaluated (usina narentheses) i ithmetic axnressions containina hoth ADD/SIIR and
s 4

MUL operations to enable your compiler Gain | Potential gain | Hints i Experts only

For instance a + b*c is a valid FMA (MUL

However (a+b)* ¢ cannot be translated in I

Pziected data structures (typically arrays) that cannot be efficiently read/writnien

« Constant non-unit stride: 1 occurrence(s)
* [reqgular (variable stride) or indirect: 1 occurrence(s)

Source code and associated issues

. Reductions

. Variable number of iterations

ARM architectures

= ARM ecosystem is growing fast:
= Several manufacturers building processors tuned for HPC
" Mathematical libraries ported for ARMv8 processors

= Several supercomputers under construction

= A need for optimisation MOM’BLANC

® The Mont-Blanc 3 project:
" Development of the software ecosystem for HPC

" Port of optimisation tools: MAQAOQO for ARMv8 available at https://github.com/maqao/maqgao

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

CQA:Architecture model validation

= Comparison of the static simulation against measurements:
= Numerical Recipes (William H Press: Numerical recipes 3rd edition:The art of scientific computing):
= Representative of many scientific kernels

= Target different architectural and performance bottlenecks

® Environment:
= ARM Cortex A-57
= Compiled with gcc 6.3.0

m= Datain LIl cache

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) I

CQA:Accuracy on Numerical Recipes

40

30

= Stride | Cycle per Iteration (CPI) 20

= Average accuracy: 89%

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

0—-.--

f§\\ KNS o'.'P d” c?’ d" c?’ \'\" \"”\1’ \"” ?9—"

W Measured CPI
B CQACPI

IL-I .--.I 1

o”’°’/

X &~ QQ Q,Q QQ %Q N\

Benchmark

CQA:Accuracy on Numerical Recipes

w

N

[

. . Cycle
® Non unit-stride per
Iteration (CPI) W Measured CPI
m CQA CPI
= Average accuracy: 92%
0

hgr_15 elmhes_11 svdcmp_11 svdcmp_6

Benchmark

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 13

VECTORISATION: ARMv8 SVE

= Scalable Vector Extension:

= Compatibility across implementations (embedded systems, big data, HPC, ...)
® Advantages for High Performance Computing:

" Forward compatibility

" Less micro-architecture specific processing for the compilers

® Predicates allowing to work on partial vectors

= Compilers have to produce vectorised code in order to benefit from SVE

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

VECTORISATION: Study of the Arm HPC compiler

= Test Suite for Vectorizing Compiler (Maleki et al. 201 | - An evaluation of vectorising compilers.)

® Covers several aspects and check handling of techniques serving auto-vectorisation

" Growing complexity
= Intel: = Arm:

= Intel compiler icc 17.0.2 = Arm HPC tools armclang 18.2 (based on llvm 5.0.1)

= Compiled for a Intel Core i7-4770 (Haswell) ® Compiled for a Cavium ThunderX2 (ARMv8)

= Using CQA to compute the percentage of vectorised code generated by the compilers:

Y. Number of vectorised instructions
Y. Number of vectorisable instructions

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

VECTORISATION: Linear dependence

= Compilers must check that there is no dependence between iterations

= for(inti=1;i<LEN;i+=2) = for(inti=1;i<LEN;i+=1)
ali] = afi — 1] + b[i]; a[i] = afi — 1] + bi;
= False dependency: " True dependency:
" Accessing a[i — |] does not generate a dependency with aJi] ® Processing element i requires the results of the previous
thanks to the increment of 2. iteration

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018)

VECTORISATION: Compilers vectorisation efficiency

Category: Linear dependence

B cc Vect. %
—— Mean (Icc Vect. %)
mm Armclang Vect. %
I —— Mean (Armclang Vect. %)

s111 s1111 s112 s1112 s113 s1113 s114 s115 s1115 s116 s118 s119 s1119

100.00
90.00
80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00

Vectorisation %

Loop

" |cc average vectorisation %:43,1% = Armclang average vectorisation %: 50,0%

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 17

VECTORISATION: Induction variable recognition

® Induction variables are modified and/or defined in the loop

= A typical example:

= for(inti=0;i<LEN-1;i++){
j=i+ 1,
a[j] = a[j] + bi;
}

= False dependency:

= jis setin every iteration but is always i + 1

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 18

VECTORISATION: Induction variable recognition

Category: Induction variable recognition

100.00
90.00
80.00
70.00
60.00 B icc Vect. %
o 50.00 —— Mean (Icc Vect. %)
Vectorisation % 45 00 s Armclang Vect. %
30.00 Mean (Armclang Vect. %)
20.00
10.00
0.00

s121 s122 s123 s124 s125 s126 s127 s128

Loop

" |cc average vectorisation %: 56,9% = Armclang average vectorisation %: 28,6%

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 19

VECTORISATION: Loop Interchange

" The compiler must be able to interchange loops to perform vectorization
= A typical example:

= for (inti=0;i<LEN;i++){
for (intj=1;j <LEN;j++){
afj]li] = afj[i] + bO[i];
}
}

= False dependency:

= Without permuting loops, expression cannot be vectorized

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 20

VECTORISATION: Loop Interchange

Category: Loop interchange

100.00
90.00
80.00
70.00
60.00 B (cc Vect. %

50.00 —— Mean (Icc Vect. %)
40.00 mm Armclang Vect. %

30.00 —— Mean (Armclang Vect. %)
20.00
10.00

0.00

Vectorisation %

s231 §232 51232 s233 §2233 s235
Loop

= |cc average vectorisation %: 50,0% = Armclang average vectorisation %: 0%

= LLVM’s loop interchange flag not recognized

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 21

VECTORISATION: Control Flow

= |f statement inside the loop

= A typical example:

= for (inti=0;i<LEN-1;i++){
if (b[i] > (float)0.)
ali] = a[i] * b[i[;
}

® The compiler must handle the singularity to be able to vectorise

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 22

VECTORISATION: Control Flow

Category: Control Flow

100.00
90.00
80.00
70.00
60.00 B [cc Vect. %
N 50.00 —— Mean (Icc Vect. %)
Vectorisation % 45 00 mmmm Armclang Vect. %
30.00 Mean (Armclang Vect. %)
20.00
10.00
0.00

S271 s272 s273 s274 s275s2275s276 s277 s278 s279s1279s2710s2711s2712

Loop

= |cc average vectorisation %: 92,7% = Armclang average vectorisation %: 0,9%

= Vectorisation report show issues with control flow

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 23

MAQAO for AArché64 architectures

= MAQAO for AArché4 is released:

® Guide users in their optimisation process

= Evaluate compilers output according to your micro-architecture

= Armclang vectorisation analysis:
= Missing loop interchange flag

®= Room for improvement in control flow handling

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 24

Thank you for your attention !

Questions ?

MAQAO FOR AARCH64 ARCHITECTURES - ARM RESEARCH SUMMIT (17-19 SEP 2018) 25

