

BRILLIANCE 150P

PRIM

- Research 1
- Partners News & Aw

tons Tools & Der

Southampton

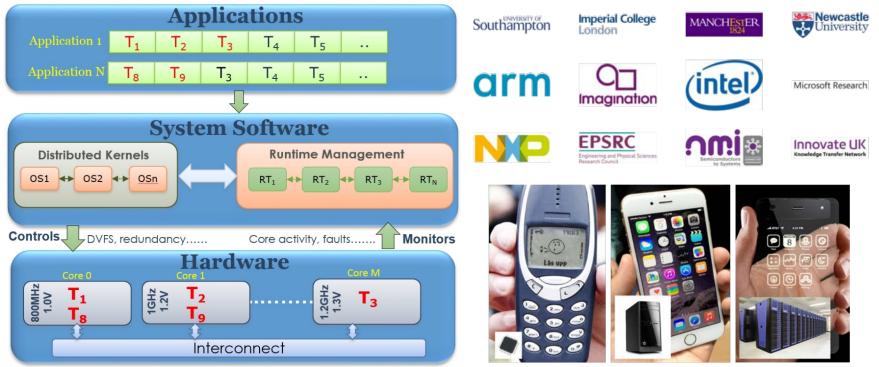
Engagemer

"Our vision is to enable the sustainability of many-core scaling by preventing the uncontrolled increase in energy consumption and unreliability through a step change in holistic design methods and cross-layer system optimisation."

ME Director, Professor Bashir Al-Hashimi, Prizing, Passa, Passa

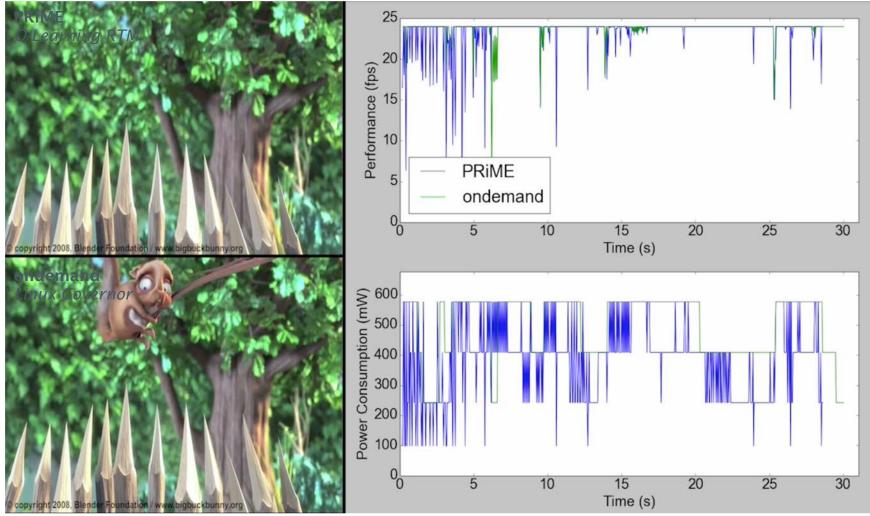
RUN-TIME POWER AND ENERGY MANAGEMENT OF MANY-CORE SYSTEMS

Dr Geoff Merrett


19 September 2018 | Arm Research Summit, Cambridge, UK

www.prime-project.org

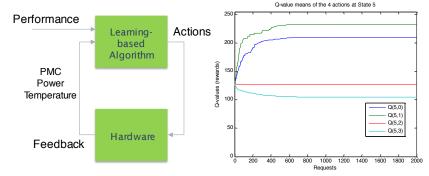
"Enable the sustainability of many-core scaling by preventing the uncontrolled increase in energy consumption and unreliability through a step change in holistic design methods and cross-layer system optimisation."

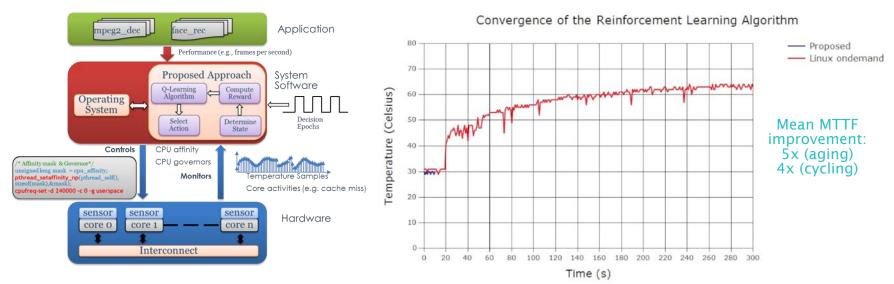


A "supercomputer in your hands", running 100s of cores with a battery lasting for a day

RUNTIME POWER MANAGEMENT

Maeda-Nunez, Luis Alfonso, Anup K. Das, Rishad A. Shafik, Geoff V. Merrett, and Bashir Al-Hashimi. "*PoGo: an application-specific adaptive energy minimisation approach for embedded systems.*" **HiPEAC Workshop on Energy Efficiency with Heterogenous Computing**, 2015





LEARNING OPTIMAL DVFS CHOICES

Reinforcement Learning

- Observes the current system state
- Selects an action (V-F pairs)
- Changes the state (workload)
- Leads to a payoff (reward/penalty)

Das, Anup, Al-Hashimi, Bashir and Merrett, Geoff (2015) Adaptive and hierarchical run-time manager for energy-aware thermal management of embedded systems. ACM Transactions on Embedded Computing Systems, 1-25.

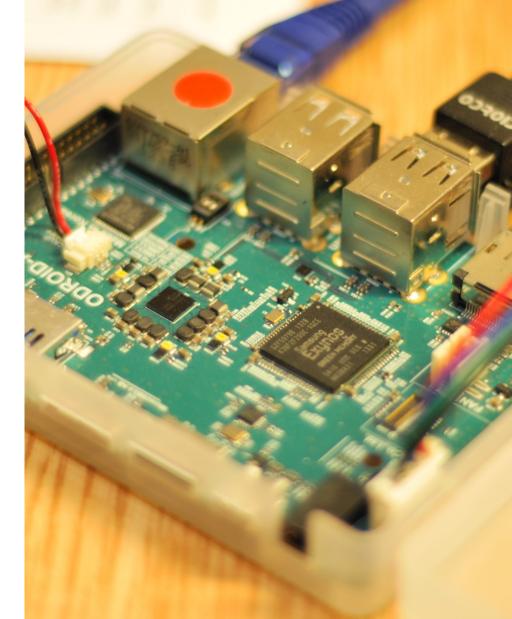
OVERVIEW

Applications

 From single > sequential > concurrent execution

Offline Characterisation

• Can we improve RTM through offline characterisation?

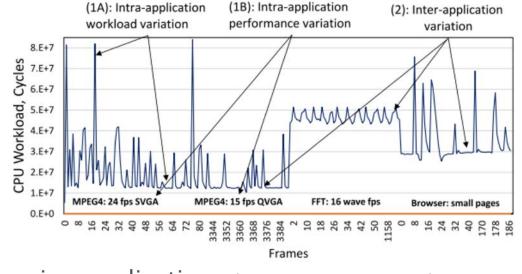

Towards Many-Core

• How do RTM approaches scale with number of cores?

Novel Platforms

• Can our RTM approaches be applied to novel platforms?

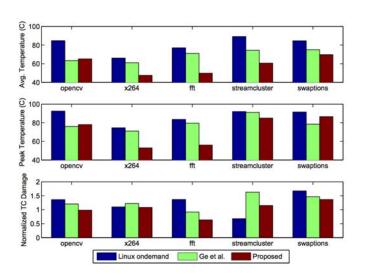
RTMs and Application Workloads

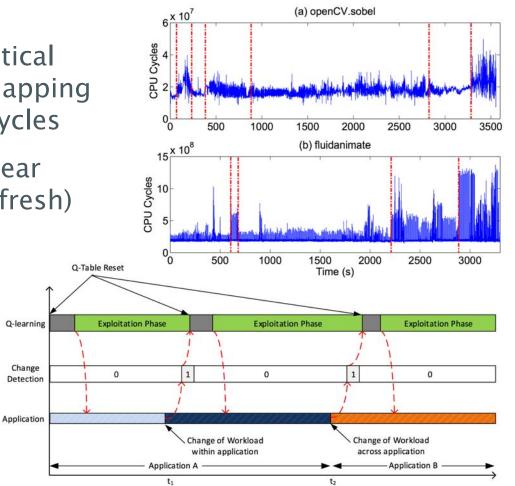

From single > sequential > concurrent execution

EXECUTING MULTIPLE APPLICATIONS

- Workload and performance variation due to:
 - Changes within an application
 - Changing applications (sequential execution)

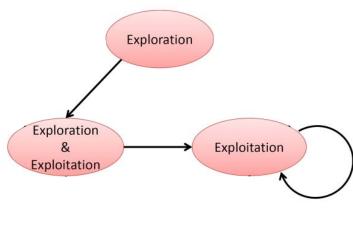
Overlapping applications (concurrent execution)

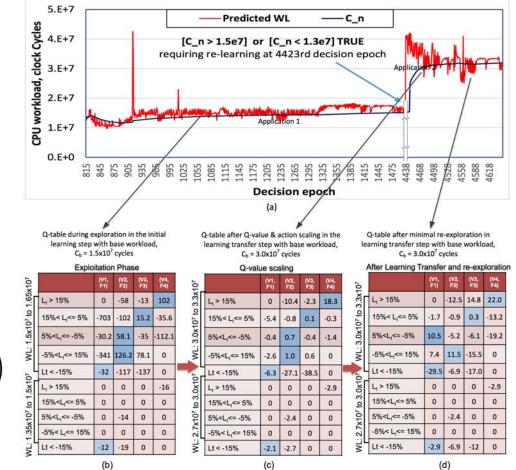

Shafik, Rishad, Das, Anup, Maeda-Nunez, Luis, Yang, Sheng, Merrett, Geoff and Al-Hashimi, Bashir (2015) *Learning transfer-based adaptive energy minimization in embedded systems*. **IEEE TCAD**.



DETECTING WORKLOAD CHANGES

- Density ratio-based statistical divergence between overlapping sliding windows of CPU cycles
- Use this information to clear learning table (i.e. start afresh)





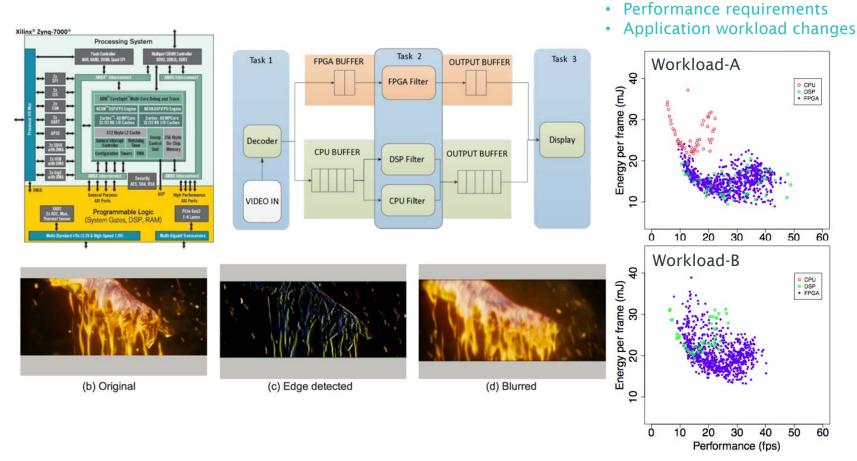
TRANSFERING LEARNING

- Detect workload changes
- Transfer knowledge where possible
- Learn again fresh when not

Shafik, Rishad, Das, Anup, Maeda-Nunez, Luis, Yang, Sheng, Merrett, Geoff and Al-Hashimi, Bashir (2015) *Learning transfer-based adaptive energy minimization in embedded systems*. **IEEE TCAD**.

Online vs Offline

Can we improve RTM through offline characterisation?

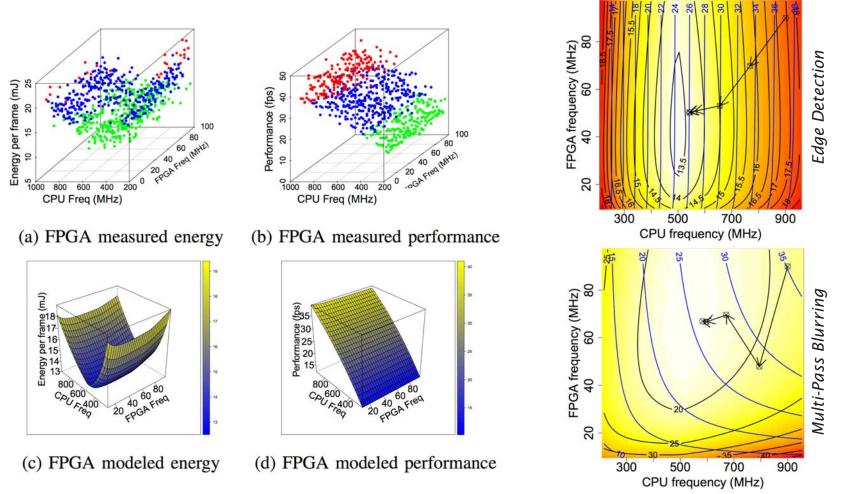


11

Run-time changes in:

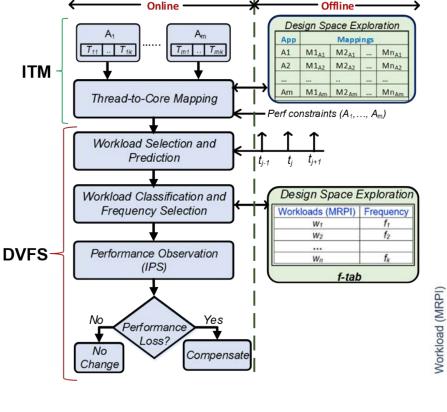
MODEL-BASED RTM: HETEROGENEITY

Heterogeneous Platforms


Yang, Sheng, Shafik, Rishad Ahmed, Merrett, Geoff V., Stott, Edward, Levine, Joshua, Davis, James and Al-Hashimi, Bashir (2015) *Adaptive energy minimization of embedded heterogeneous system using regression-based learning*. **PATMOS 2015**, Salvador, BR, 01 - 04 Sep 2015. 8pp.

MODEL-BASED RTM: HETEROGENEITY

Heterogeneous Platforms


Yang, Sheng, Shafik, Rishad Ahmed, Merrett, Geoff V., Stott, Edward, Levine, Joshua, Davis, James and Al-Hashimi, Bashir (2015) Adaptive energy minimization of embedded heterogeneous system using regression-based learning. PATMOS 2015, Salvador, BR, 01 - 04 Sep 2015. 8pp.

RTM FOR CONCURRENT EXECUTION

MRPI (Memory Reads Per Instruction)

- Supports concurrent execution of applications
- Inter-cluster Thread-tocore Mapping (ITM).
- MRPI informs DVFS control

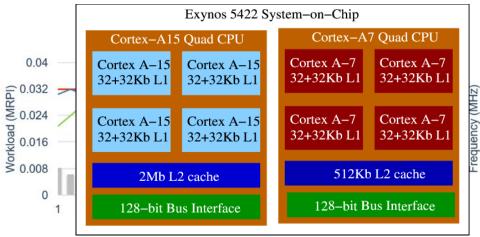


Image: Catalán et al., Performance and Energy Optimization of Matrix Multiplication on Asymmetric big.LITTLE Processors, 2015

Reddy, Basireddy Karunakar, Singh, Amit, Biswas, Dwaipayan, Merrett, Geoff and Al-Hashimi, Bashir (2017) Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-cores IEEE Transactions on Multiscale Computing Systems, pp. 1-14.

Towards Many-Core

How do RTM approaches scale with number of cores?

ENERGY RTM ON HPC SYSTEMS

- Applications targeted for HPC are usually multi-threaded
- Modern HPC often based on Non-Uniform Memory Access (NUMA) architecture
- Our Approach
 - Platform characterized offline
 - Workload estimated based on memory-intensity, thread synchronization contention, NUMA latency
 - V-f determined using binning, while accounting for contention due to concurrent execution An

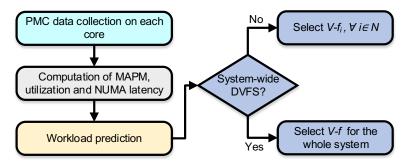
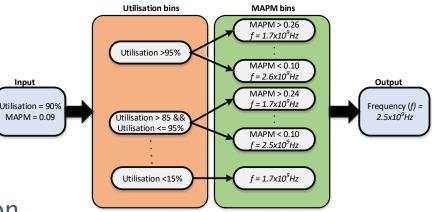
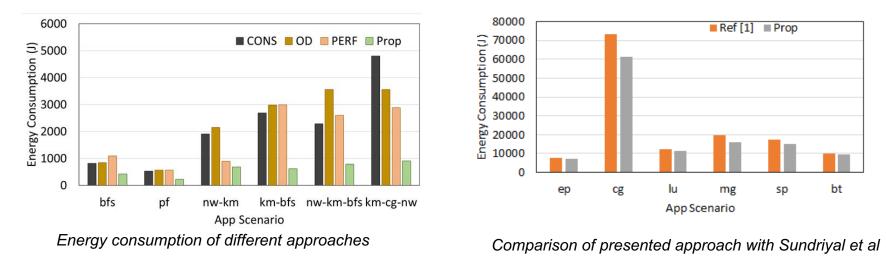



Illustration of various steps in the proposed approach

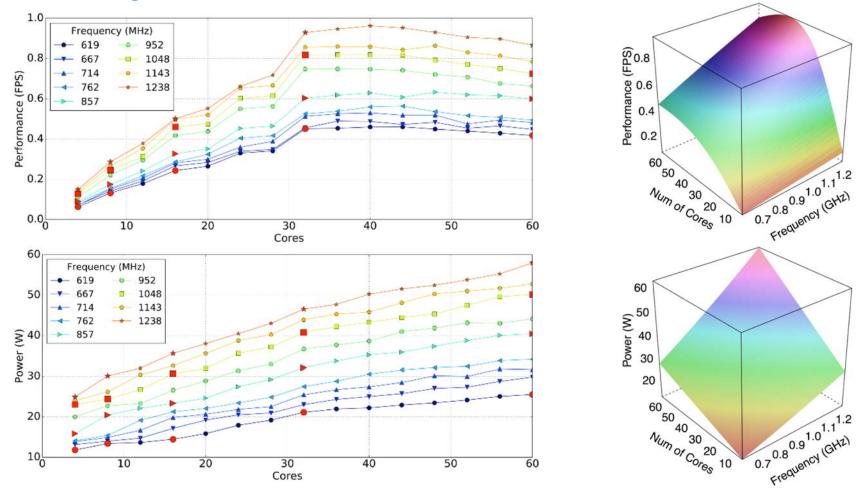

An example of V-f setting selection using binning-based approach

Basireddy, Karunakar Reddy, Wachter, Eduardo W., Al-Hashimi, Bashir M. and Merrett, Geoff V. (2018) *Workload-aware runtime energy management for HPC systems*. In Int'l Workshop Optimization of Energy Efficient HPC & Distributed Systems (OPTIM'18).

ENERGY RTM ON HPC SYSTEMS

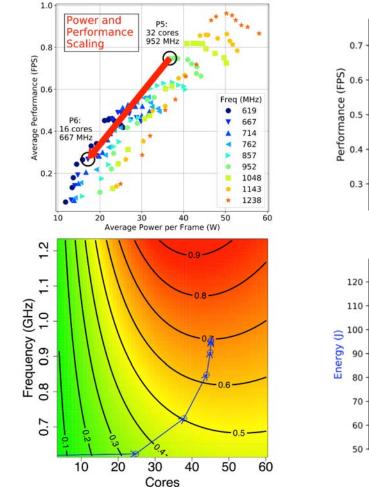
- Xeon E5-2630 (12 cores, 24 threads) and Xeon Phi 7620P (61 cores, 244 threads); NAS and Rodinia benchmarks
- Proposed (Prop) approach achieves energy savings of up to 81% (Xeon) and 61% (Phi) compared to Linux's governors
- Outperforms Sundriyal *et al.* by 10% in energy efficiency and 3.7% in performance

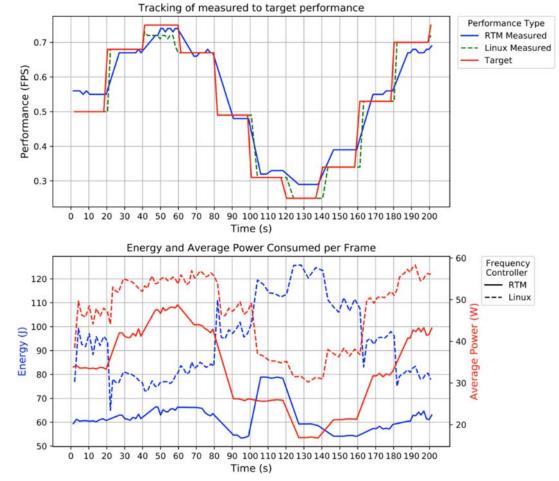
Basireddy, Karunakar Reddy, Wachter, Eduardo W., Al-Hashimi, Bashir M. and Merrett, Geoff V. (2018) *Workload-aware runtime energy* management for HPC systems. In Int'l Workshop Optimization of Energy Efficient HPC & Distributed Systems (OPTIM'18).



MODEL-BASED RTM

Model Building


Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) *Run-time performance and power optimization of parallel disparity estimation on many-core platforms* **ACM Transactions on Embedded Computing Systems**

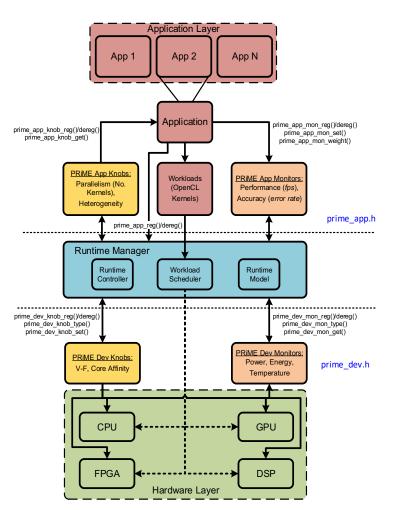


MODEL-BASED RTM

Runtime Management

Leech, Charles, Vala, Charan Kumar, Acharyya, Amit, Yang, Sheng, Merrett, Geoffrey and Al-Hashimi, Bashir (2017) Run-time performance and power optimization of parallel disparity estimation on many-core platforms ACM Transactions on Embedded Computing Systems

OPEN SOURCE TOOLS



PRIME RTM FRAMEWORK

https://github.com/PRiME-project/PRiME-Framework

Plat.	Const.	Space	Ţ	уре	For		No.
Odroid-XU3	knob	disc	GOVERNER		A7 cluster		1
		disc	GOVERNER		A15 cluster		1
		disc	FREQ		A7 cluster		1
		disc	FREQ		A15 cluster		1
		disc	FREQ_EN		GPU DVFS		1
		disc	FREQ		GPU		1
		disc	PMC_CTRL		A7 cores		16
		disc	PMC_CTRL		A15 cores		24
	mon	cont	POW		Clusters, RAM, GPU, SoC		5
		cont	TEMP		A15 cores		4
		cont	TEMP		GPU		1
		disc	CYCLE		A7 cores		4
		disc	CYCLE		A15 cores		4
		disc	PMC		A7 cores		16
		disc	PMC		A15 cores		24
Cyclone V	knob	cont	VOLT		A9 cluster, peripherals		4
		cont	VOLT		FPGA, peripherals		3
	mon	cont	POW		A9 cluster, peripherals		5
		cont	POW		FPGA, peripherals		4
		cont	POW		SoC		1
Application		Nai	ne	Const.	Space	Allowed/target v	alues
Jacobi		Iterations		knob	disc	$\mathbb{N} \in [1,\infty)$	
		Data type		knob	disc	{float,double}	
		Device type		knob	disc	{CPU, GPU/FPGA}	
		Throughput		mon	cont	$\mathbb{R} \in [10,\infty)$	
		Error		mon	cont	$\mathbb{R} \in \left(-\infty, 1e^{-12}\right]$	
Video decoder		Throughput		mon	cont	$\mathbb{R}\in [25,\infty)$	
Whetstone		Threads		knob	disc	$\mathbb{N} \in [1,\infty)$	
		Throughput		mon	cont	$\mathbb{R} \in [2.5,\infty)$	

G.M. Bragg, C.R. Leech, D. Balsamo, J.J. Davis, E.W. Wachter, G.V. Merrett, G.A. Constantinides, B.M. Al-Hashimi, (2018) "An application- and platform-agnostic control and monitoring framework for multicore systems". Int'l Conf. Pervasive and Embedded Computing, Porto, Portugal. 29-30 Jul 2018 (Best Paper Award).

POWMON: STABLE POWER MODELLING

www.powmon.ecs.soton.ac.uk

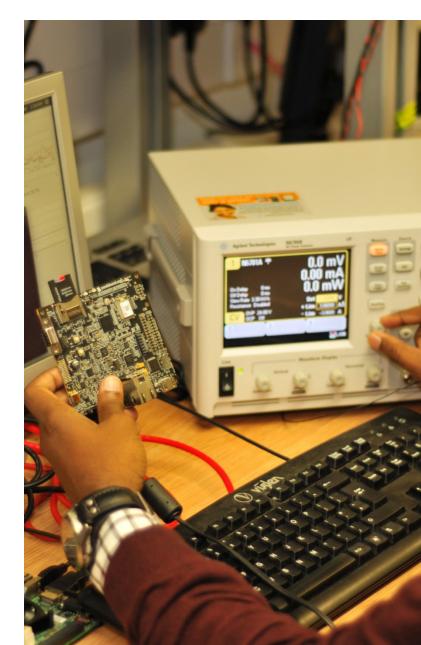
Our stable approach achieves a low average error and narrow error distribution compared to existing techniques.

[a] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin, "Power-performance modeling on asymmetric multi-cores," CASES '13.
[b] M. Walker et al., "Run-time power estimation for mobile and embedded asymmetric multi-core cpus," HIPEAC Workshop Energy Efficiency with Hetero. Comp. 2015
[c] S. K. Rethinagiri et al., "System-level power estimation tool for embedded processor based platforms," RAPIDO '14. New York, 2014.
[d], [e] R. Rodrigues et al, "A study on the use of performance counters to estimate power in microprocessors," IEEE TCAS II, vol. 60, no. 12, pp. 882–886, Dec 2013.

M. J. Walker *et al.*, "Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106-119, Jan. 2017.

CONCLUSIONS

Runtime Power Management


- Single > multiple > concurrent applications
- Online vs offline+online approaches
- >> Number of cores
- Homogeneous vs Heterogeneous platforms

Tools and Support <u>www.prime-project.org</u>

- PowMon power estimation <u>www.powmon.ecs.soton.ac.uk</u> <u>www.gemstone.ecs.soton.ac.uk</u>
- PRiME RTM Framework github.com/PRiME-project/PRiME-Framework
- PRiMEStereoMatch application github.com/PRiME-project/PRiMEStereoMatch

A. Singh, C. Leech, K. Basireddy, B.M. Al-Hashimi, G.V. Merrett, (2017) "*Learning-based run-time power and energy management of multi/many-core systems: current and future trends*". Journal of Low Power Electronics

Any Questions?

Southampton

Dr Geoff V Merrett Associate Professor | Head of Centre

Centre for IoT and Pervasive Systems Tel: +44 (0)23 8059 2775 Email: gvm@ecs.soton.ac.uk | www.geoffmerrett.co.uk Highfield Campus, Southampton, SO17 1BJ UK