
© 2021 Arm

Eric Kunze
April 9th 2021

Tensor Operator Set 
Architecture

(TOSA)

2nd On Device Intelligence Workshop
MLSys 2021



© 2021 Arm

Background

Why TOSA?



3 © 2021 Arm

Fast moving ecosystem
• ML Frameworks are moving incredibly quickly.
• Hardware and software inference platforms are fragmented.

• Requires significant work to optimize networks for different inference platforms.
• This work must be repeated for every new platform.
• No standards regarding numerical behavior (e.g., quantization) and functionality.



4 © 2021 Arm

Using the power of the entire system
• ML acceleration is appearing on more devices.
• Without a standard, developers need to choose:

• Spend significant engineering effort optimizing for each device 
• Go with the lowest common denominator at the cost of performance.

• High end phones now come with NPUs supporting multiple TOPs.
• Without common operator standards, difficult for a third-party application to use 

them.



5 © 2021 Arm

Lowering the support cost
• As ML inference flows into more and more products, support will become 

an issue.
• In some deployments the devices have a long lifetime, like cars.
• Developers want to bring their latest networks onto all hardware.
• Test the network once for all compliant devices. 
• Manage the support burden as more systems are deployed.



© 2021 Arm

TOSA Specification



7 © 2021 Arm

Tensor Operator Set Architecture (TOSA)

• A set of operators that work on tensors.
• Independent of any software or hardware design.
• Architected precision and numerical operation.
• Rigorous compliance testing.
• Designed for a wide variety of implementations.



8 © 2021 Arm

Tensor operators only
• TOSA specifies operators only for whole tensors.
• Tensor operations allow for a variety of implementations and 

optimizations.
• Operator fusing and tiling.
• Memory traversal optimizations.

• Tensors are already the core of the frameworks.



9 © 2021 Arm

Stability and consistency

• Standardized, stable layer between the frameworks and the 
inference platform.

• Enable fast evolution of the frameworks, while stabilizing the platform 
below the layer.

• Finite set of composable primitives enabling infinite set of operators .
• ML model built using TOSA guaranteed to run on any platform 

supporting TOSA.



10 © 2021 Arm

Standardization
• TOSA is an open standard.
• The TOSA standard license grants a license to IP required to implement the 

specification.
• Contributions to the specification are required to grant similar rights.
• We encourage a wide array of implementations and welcome 

contributions.



11 © 2021 Arm

TOSA principles
• Operators should be primitives that cannot be broken down into simpler 

whole-tensor operations.
• Operators should be building blocks for more complex operations.
• Numerical definition should be consistent between operators.
• Valid input and output ranges for all operands shall be specified.
• Integer operators shall be implementable in bit-exact form with good 

efficiency.



12 © 2021 Arm

How to choose the operators?
• Reviewed frameworks comparing the supported operators.
• Iterated over a proposed set of TOSA operators.
• Looked for common building blocks to build framework operators from.
• Created test sequences of TOSA operators matching the original operator.



13 © 2021 Arm

TOSA Operators
• As of the current version 0.22, TOSA consists of ~70 operators.
• Operator categories

• Tensor operations (convolve/pool)
• Elementwise operations (unary/binary/ternary)
• Activation
• Comparison
• Reduction
• Data transform 
• Scatter/Gather
• Image 
• Control Flow (if/while)



14 © 2021 Arm

Quantized integer operation semantics
• Embedded inference platforms often lack floating point hardware.
• The operation of quantized integer operators is not well defined in the 

frameworks (where it exists at all)
• TOSA makes the semantics explicit by separating scaling out into RESCALE 

operations.
• RESCALE rescales between different ranges and bit widths using an integer 

multiply, shift, and round.
• This allows a variety of scale choices, while ensuring the same result for a 

given sequence of TOSA operations.



15 © 2021 Arm

8-bit32-bit8-bit

Quantized integer example
• Example – Elementwise add of two quantized 8-bit integer tensors.

• Each tensor may have a different scale, so simple addition doesn’t work.
• We must scale both inputs into a common range.
• There are multiple valid options for scale LHS/RHS/Output, but for any given choice, 

the computation must be consistent.

LHS RESCALE 
8->32 ADD 

32-bit integer
RESCALE 

32->8

Scale LHS

RESCALE 
8->32

Scale RHS

Output

Scale 
Output

RHS



16 © 2021 Arm

Profiles
• Profiles enable consistent deployment across a class of devices
• 3 profiles defined to cover microcontrollers up through large cores

Profile​ Name​ Integer​
Inference​

Floating-
point Inference​

Training​ Common use

Base Inference​ TOSA-BI​ Yes​ No​ No​ Microcontroller 
deployment

Main Inference​ TOSA-MI​ Yes​ Yes​ No​ Inference deployment

Main Training​ TOSA-MT​ Yes​ Yes​ Yes​ Training



17 © 2021 Arm

Operator specification
• Arguments

• Inputs - Inputs not known at compile time. Always tensors/lists of tensors.
• Attributes - Inputs that are known at compile time.
• Outputs - Operator output values. Always tensors/lists of tensors.

• Supported Data types
• float/int8/int16/bool.
• Smaller data types allowed if they give the same numeric result as the same number 

stored in an 8-bit container.

• Detailed operation code
• Profiles supported
• Quantization parameters (scale, zero point)



18 © 2021 Arm

Example operator specification



19 © 2021 Arm

Composing a new operator with TOSA

• What happens when a new operator comes along?
• Example: ELU activation, not part of TOSA.

• elu(x) = x if x >= 0, exp(x)-1 otherwise
• TOSA sequence implementing ELU:

• A = EXP(x)
• B = SUB(A, 1)
• C = GREATER_EQUAL(X, 0) // Is X >= 0
• Output = SELECT(C, X, B) // return X or B based on >= results

• We have sequences of >15 TOSA operators to match 
one framework operator (quantized SoftMax)



© 2021 Arm

Beyond the specification

Applying TOSA



21 © 2021 Arm

Reference implementation and test suite
• Reference implementation published along with the specification, which consumes a 

TOSA graph and input data, and produces output data.
• Reference implementation computations follow the precision in the specification.
• TOSA testcase generator, which creates TOSA graphs and input data.

TOSA 
graph

Input 
Data

Reference 
Implementation

Output 
data

Test 
Generator



22 © 2021 Arm

MLIR - Multi Level Intermediate Representation
• MLIR is a compiler toolkit being worked on as part of the LLVM project.
• Provides an infrastructure for representing multiple IRs within a single graph.
• Makes it easy to add new dialects, which represent an abstraction level.
• Passes can provide analysis and optimization of dialects.
• Legalization passes convert from one dialect into another.
• For details on MLIR, see Jacques Pienaar’s (Google) talk from the Chips and Compilers 

Symposium.



23 © 2021 Arm

TOSA in MLIR
• We have published a TOSA dialect within the MLIR compiler project.
• TensorFlow and TensorFlow Lite teams have released MLIR dialects.
• MLIR legalization passes take TensorFlow and TensorFlow lite networks and create TOSA 

graphs from them.

TensorFlow TensorFlow Lite

TOSA

Code generation dialects

CPU

Other MLIR 
dialects

GPU NPU

Framework dialects

Analysis/optimization
passes

Hardware targets



24 © 2021 Arm

TOSA, TensorFlow, and TensorFlow Lite
• Using the reference implementation and the compiler stack, we can verify that the 

translation from the framework into TOSA has the same result as the original network.

TensorFlow 
network

TOSA reference 
implementation

TF 
runtime

TF to TOSA 
MLIR

Output data 
comparison

Input 
data

TOSA 
graph



25 © 2021 Arm

TOSA in hardware
• Hardware implementation has a stable set of operators to implement.
• Simplify verification by comparing against the reference implementation.
• Public test suite also eases verification effort.
• TOSA abstraction level enables innovative hardware designs.
• Existing TOSA networks port to new hardware designs.



© 2021 Arm

Moving forward

Where does TOSA go from here?



27 © 2021 Arm

TOSA open-source reference
• TOSA specification published on mlplatform.org

• https://developer.mlplatform.org/w/tosa/
• Open for contributions with CLA to enable implementations to avoid IP problems.

• TOSA reference implementation published on mlplatform.org
• https://git.mlplatform.org/tosa/reference_model.git
• Includes TOSA test generator.

• TOSA MLIR dialect published in LLVM GitHub repository.
• https://github.com/llvm/llvm-project/tree/main/mlir/lib/Dialect/Tosa

• TensorFlow and TensorFlow Lite legalizations published in TensorFlow 
GitHub repository.

• https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/mlir/tosa

https://developer.mlplatform.org/w/tosa/
https://git.mlplatform.org/tosa/reference_model.git
https://github.com/llvm/llvm-project/tree/main/mlir/lib/Dialect/Tosa
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/mlir/tosa


28 © 2021 Arm

Contribute to TOSA
• Achieving a wide array of implementations benefits application and 

implementation developers.
• MLPlatform hosts a discourse forum for TOSA discussions.
• Contributions are welcome at all levels

• Specification
• Reference implementation
• MLIR dialect
• Transformations between frameworks.

https://discuss.mlplatform.org/


29 © 2021 Arm

Thank you
• The MLIR community has been very helpful as we have worked on the dialect, giving us 

feedback and assistance to land a very large change.
• Thanks to the TensorFlow and IREE teams at Google for a great deal of advice, code 

reviews and overall help in bringing the TensorFlow and TensorFlow Lite to TOSA 
legalizations into the TensorFlow repository.



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm


	Tensor Operator Set Architecture�(TOSA)
	Background
	Fast moving ecosystem
	Using the power of the entire system
	Lowering the support cost
	TOSA Specification
	Tensor Operator Set Architecture (TOSA)
	Tensor operators only
	Stability and consistency
	Standardization
	TOSA principles
	How to choose the operators?
	TOSA Operators
	Quantized integer operation semantics
	Quantized integer example
	Profiles
	Operator specification
	Example operator specification
	Composing a new operator with TOSA
	Beyond the specification
	Reference implementation and test suite
	MLIR - Multi Level Intermediate Representation
	TOSA in MLIR
	TOSA, TensorFlow, and TensorFlow Lite
	TOSA in hardware
	Moving forward
	TOSA open-source reference
	Contribute to TOSA
	Thank you
	Slide Number 30

