

Background

Why TOSA?

Fast moving ecosystem

- ML Frameworks are moving incredibly quickly.
- Hardware and software inference platforms are fragmented.
 - Requires significant work to optimize networks for different inference platforms.
 - This work must be repeated for every new platform.
 - No standards regarding numerical behavior (e.g., quantization) and functionality.

Using the power of the entire system

- ML acceleration is appearing on more devices.
- Without a standard, developers need to choose:
 - Spend significant engineering effort optimizing for each device
 - Go with the lowest common denominator at the cost of performance.
- High end phones now come with NPUs supporting multiple TOPs.
 - Without common operator standards, difficult for a third-party application to use them.

Lowering the support cost

- As ML inference flows into more and more products, support will become an issue.
- In some deployments the devices have a long lifetime, like cars.
- Developers want to bring their latest networks onto all hardware.
- Test the network once for all compliant devices.
- Manage the support burden as more systems are deployed.

TOSA Specification

Tensor Operator Set Architecture (TOSA)

- A set of operators that work on tensors.
- Independent of any software or hardware design.
- Architected precision and numerical operation.
- Rigorous compliance testing.
- Designed for a wide variety of implementations.

Tensor operators only

- TOSA specifies operators only for whole tensors.
- Tensor operations allow for a variety of implementations and optimizations.
 - Operator fusing and tiling.
 - Memory traversal optimizations.
- Tensors are already the core of the frameworks.

Stability and consistency

- Standardized, stable layer between the frameworks and the inference platform.
 - Enable fast evolution of the frameworks, while stabilizing the platform below the layer.
 - Finite set of composable primitives enabling infinite set of operators.
- ML model built using TOSA guaranteed to run on any platform supporting TOSA.

Standardization

- TOSA is an open standard.
- The TOSA standard license grants a license to IP required to implement the specification.
- Contributions to the specification are required to grant similar rights.
- We encourage a wide array of implementations and welcome contributions.

TOSA principles

- Operators should be primitives that cannot be broken down into simpler whole-tensor operations.
- Operators should be building blocks for more complex operations.
- Numerical definition should be consistent between operators.
- Valid input and output ranges for all operands shall be specified.
- Integer operators shall be implementable in bit-exact form with good efficiency.

How to choose the operators?

- Reviewed frameworks comparing the supported operators.
- Iterated over a proposed set of TOSA operators.
- Looked for common building blocks to build framework operators from.
- Created test sequences of TOSA operators matching the original operator.

TOSA Operators

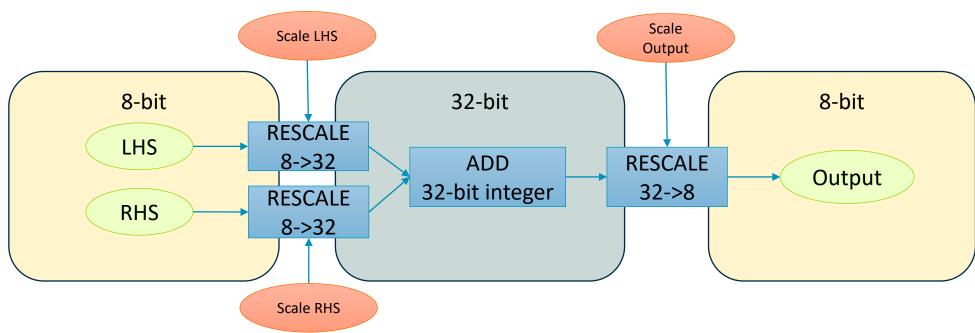
- As of the current version 0.22, TOSA consists of ~70 operators.
- Operator categories
 - Tensor operations (convolve/pool)
 - Elementwise operations (unary/binary/ternary)
 - Activation
 - Comparison
 - Reduction
 - Data transform
 - Scatter/Gather
 - Image
 - Control Flow (if/while)

Quantized integer operation semantics

- Embedded inference platforms often lack floating point hardware.
- The operation of quantized integer operators is not well defined in the frameworks (where it exists at all)
- TOSA makes the semantics explicit by separating scaling out into RESCALE operations.
- RESCALE rescales between different ranges and bit widths using an integer multiply, shift, and round.
- This allows a variety of scale choices, while ensuring the same result for a given sequence of TOSA operations.

Quantized integer example

- Example Elementwise add of two quantized 8-bit integer tensors.
 - Each tensor may have a different scale, so simple addition doesn't work.
 - We must scale both inputs into a common range.
 - There are multiple valid options for scale LHS/RHS/Output, but for any given choice, the computation must be consistent.



Profiles

- Profiles enable consistent deployment across a class of devices
- 3 profiles defined to cover microcontrollers up through large cores

Profile	Name	Integer Inference	Floating- point Inference	Training	Common use
Base Inference	TOSA-BI	Yes	No	No	Microcontroller deployment
Main Inference	TOSA-MI	Yes	Yes	No	Inference deployment
Main Training	TOSA-MT	Yes	Yes	Yes	Training

Operator specification

- Arguments
 - Inputs Inputs not known at compile time. Always tensors/lists of tensors.
 - Attributes Inputs that are known at compile time.
 - Outputs Operator output values. Always tensors/lists of tensors.
- Supported Data types
 - float/int8/int16/bool.
 - Smaller data types allowed if they give the same numeric result as the same number stored in an 8-bit container.
- Detailed operation code
- Profiles supported
- Quantization parameters (scale, zero point)

Example operator specification

2.9.2. REDUCE_ANY

Reduce a tensor along the given axis with a logical OR operation

Arguments:

Argument	Туре	Name	Shape	Description
Input	in_t*	input	shape1	Input tensor with rank from 1 to 4
Attribute	int32_t	axis	-	Axis to reduce, in range from 0 to rank(shape1)-1
Output	in_t*	output	shape	Output tensor. Same rank as the input tensor.

Operation Function:

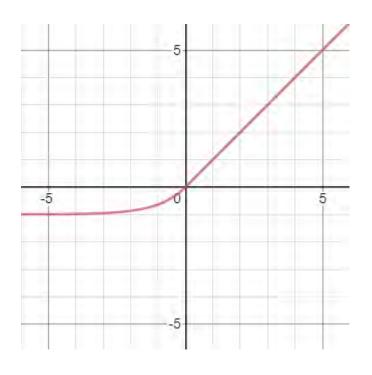
```
assert(0 <= axis && axis < rank(shape1));
assert(shape[axis] == 1);
for_each(index in shape) {
    tensor_write<in_t>(output, shape, index, false);
}
for_each(index in shape1) {
    tmp_index = index;
    tmp_index[axis]=0;
    value = tensor_read<in_t>(input, shape1, index);
    acc = tensor_read<in_t>(output, shape, tmp_index);
    acc = acc || value;
    tensor_write<in_t>(output, shape, tmp_index, acc);
}
```

Supported Data Types:

Profile	Mode	in_t
Any	Boolean	bool_t

Composing a new operator with TOSA

- What happens when a new operator comes along?
- Example: ELU activation, not part of TOSA.
 - $elu(x) = x \text{ if } x \ge 0$, exp(x)-1 otherwise
- TOSA sequence implementing ELU:
 - A = EXP(x)
 - B = SUB(A, 1)
 - C = GREATER_EQUAL(X, 0) // Is X >= 0
 - Output = SELECT(C, X, B) // return X or B based on >= results
- We have sequences of >15 TOSA operators to match one framework operator (quantized SoftMax)

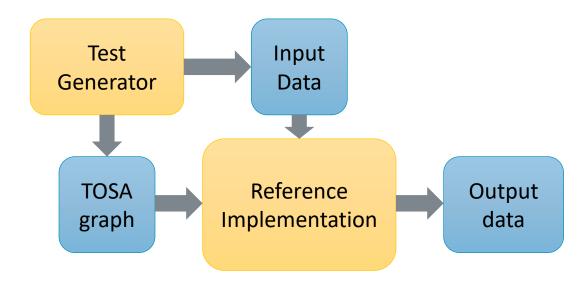


Beyond the specification

Applying TOSA

Reference implementation and test suite

- Reference implementation published along with the specification, which consumes a TOSA graph and input data, and produces output data.
- Reference implementation computations follow the precision in the specification.
- TOSA testcase generator, which creates TOSA graphs and input data.

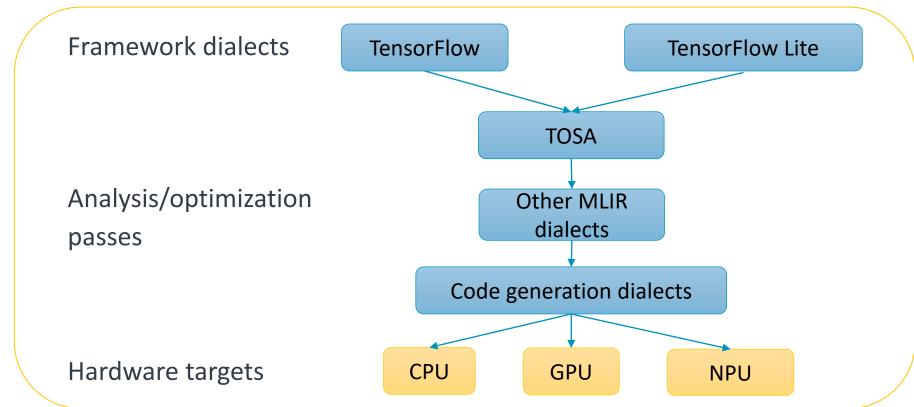


MLIR - Multi Level Intermediate Representation

- MLIR is a compiler toolkit being worked on as part of the LLVM project.
- Provides an infrastructure for representing multiple IRs within a single graph.
- Makes it easy to add new dialects, which represent an abstraction level.
- Passes can provide analysis and optimization of dialects.
- Legalization passes convert from one dialect into another.
- For details on MLIR, see Jacques Pienaar's (Google) talk from the Chips and Compilers Symposium.

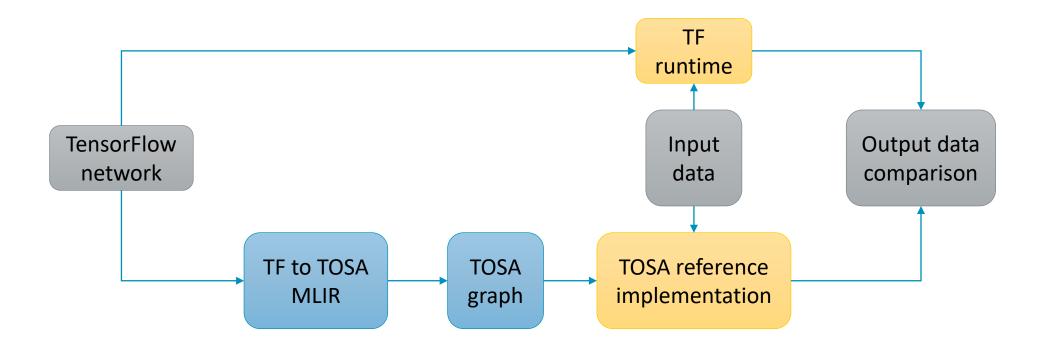
TOSA in MLIR

- We have published a TOSA dialect within the MLIR compiler project.
- TensorFlow and TensorFlow Lite teams have released MLIR dialects.
- MLIR legalization passes take TensorFlow and TensorFlow lite networks and create TOSA graphs from them.



TOSA, TensorFlow, and TensorFlow Lite

 Using the reference implementation and the compiler stack, we can verify that the translation from the framework into TOSA has the same result as the original network.



TOSA in hardware

- Hardware implementation has a stable set of operators to implement.
- Simplify verification by comparing against the reference implementation.
- Public test suite also eases verification effort.
- TOSA abstraction level enables innovative hardware designs.
- Existing TOSA networks port to new hardware designs.

Moving forward

Where does TOSA go from here?

TOSA open-source reference

- TOSA specification published on mlplatform.org
 - https://developer.mlplatform.org/w/tosa/
 - Open for contributions with CLA to enable implementations to avoid IP problems.
- TOSA reference implementation published on mlplatform.org
 - https://git.mlplatform.org/tosa/reference_model.git
 - Includes TOSA test generator.
- TOSA MLIR dialect published in LLVM GitHub repository.
 - https://github.com/llvm/llvm-project/tree/main/mlir/lib/Dialect/Tosa
- TensorFlow and TensorFlow Lite legalizations published in TensorFlow GitHub repository.
 - https://github.com/tensorflow/tensorflow/tree/master/tensorflow/compiler/mlir/tosa

Contribute to TOSA

- Achieving a wide array of implementations benefits application and implementation developers.
- MLPlatform hosts a <u>discourse forum</u> for TOSA discussions.
- Contributions are welcome at all levels
 - Specification
 - Reference implementation
 - MLIR dialect
 - Transformations between frameworks.

Thank you

- The MLIR community has been very helpful as we have worked on the dialect, giving us feedback and assistance to land a very large change.
- Thanks to the TensorFlow and IREE teams at Google for a great deal of advice, code reviews and overall help in bringing the TensorFlow and TensorFlow Lite to TOSA legalizations into the TensorFlow repository.

⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks