
Dynamic Binary Instrumentation
and Modification with MAMBO

Cosmin Gorgovan
Guillermo Callaghan
Mikel Luján

School of Computer Science
University of Manchester



Defining key terms

• Dynamic - at runtime
• Binary - at the level of native code
• Dynamic Binary Modification (DBM)

– altering applications at runtime, at the native code level

• (Software) Instrumentation
– the transformation of a program into its own measurement tool

• Dynamic Binary Instrumentation (DBI)
– DBM, when the modification consists of adding
instrumentation code

• DBM / DBI system
– software runtime implementing DBM / DBI

1



Example uses of DBM/DBI

• microarchitectural simulation
– Sniper Multi-Core Simulator, APTSim* (MAMBO-based)

• cache simulation
– Valgrind Cachegrind, drcachesim, MAMBO cachesim

• program analysis
– Valgrind Callgrind

• memory error detection / debugging
– Valgrind Memcheck, Dr. Memory

* John Mawer, Oscar Palomar, Cosmin Gorgovan, Andy Nisbet, Will Toms, and Mikel
Luján. 2017. The Potential of Dynamic Binary Modification and CPU-FPGA SoCs for
Simulation. FCCM, 2017

2



Working principles of DBM

The DBM system scans the application code and copies it to a
software code cache:

• it transforms the code to maintain correctness & control
• all application code runs from the code cache
• it enables doing other modifications

– by plugins via an API
• think JIT (re)compilation for native code
• this introduces overheads

– in particular a performance overhead

3



MAMBO

• Fast DBM implementation for Arm (AArch32 and AArch64)
• API for modification and instrumentation plugins
• Runs on GNU/Linux
• Open source, Apache 2.0 license

– https://github.com/beehive-lab/mambo

• Contributions are welcomed
– bug reports & patches
– sample plugins
– feedback on the API

• VM image:
https://github.com/beehive-lab/mambo-vm

4

https://github.com/beehive-lab/mambo
https://github.com/beehive-lab/mambo-vm


Why MAMBO?

• small codebase: 16 kLoC (core) + 1.3kLoC (sample plugins)
• good compatibility with applications (and improving)
• allows analysis of app. code at the machine code level

– useful for microarchitectural analysis and simulation

• the API allows trading off between performance, portability
and ease of development

• good performance
– the lowest base overhead among the DBM systems for Arm
– good performance scaling for multithreaded applications

5



Why MAMBO? Low overhead

6



The MAMBO API

• Event-driven programming model
• Plugins typically handle:

– Code analysis
– Code generation, modification or instrumentation
– Runtime event handling

• Functionality to implement common tasks with
architecture-independent code
– write-once for A32, T32, A64

• Allows access to the raw machine code
– advanced code analysis
– highly optimised code generation

• Multithreaded scaling by minimising synchronisation
7



Plugins distributed with MAMBO

• branch_count - dynamic execution counters for each type
of branch (direct, indirect and returns)

• cachesim - configurable cache hierarchy simulator
• mtrace - records memory access traces
• soft_div - dynamically replaces AArch32 hardware divide
instructions with an emulation routine

• upcoming: memcheck - detects & reports memory usage
errors (e.g. buffer overflows, double frees)

8



Summary

• MAMBO - DBM implementation for Arm with low overhead
and a small codebase

• Cosmin Gorgovan, Amanieu d’Antras, Mikel Luján: MAMBO: A
Low-Overhead Dynamic Binary Modification Tool for ARM. TACO 13(1):
14:1-14:26 (2016)

• Cosmin Gorgovan, Amanieu d’Antras, Mikel Luján: Optimising Dynamic
Binary Modification Across ARMMicroarchitectures. ICPE 2018: 28-39

• https://github.com/beehive-lab/mambo

– open source code, including plugins (Apache 2.0)
– open access papers
– API tutorial slides

9

https://github.com/beehive-lab/mambo

