Ghost Loads: What Is the
Cost of Invisible Speculation?

Christos Sakalis

Mehdi Alipour

Alberto Ros (@ University of Murcia)
Stefanos Kaxiras

Alexandra Jimborean

Magnus Sjalander (@ NTNU Norway)

Speculative Out-of-Order Execution

» Try to execute any available

instruction. ROB
» Hide any “visible” side-effects until _

everything is fine. T
» |f something goes wrong, squash. - Not executed
» Squashing will not undo any _

“invisible side-effects”, such as - Speculatively executed

changes to the cache.

- Long latency

x Squashed

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Speculative Out-of-Order Execution

» Try to execute any available
instruction. ROB

» Hide any “visible” side-effects until _

everything is fine. T

- Not executed Oops!
» Squashing will not undo any _
“invisible side-effects”, such as - Speculatively executed

changes to the cache.
- Long latency

x Squashed

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

» |f something goes wrong, squash.

Spectre & Meltdown

» Spectre “guides” speculative execution by training the branch predictor.
» Meltdown uses speculative execution to leak memory addresses:

o Speculative instructions bring cache lines into the cache.

o Timing attacks can determine in which set cache lines are installed.

o Address can be inferred based on the set.
» The addresses can be used to infer data:

oHave the address determined based on the data. . '

ESS —
» Lot’s of other attacks have been surfacing since... e

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Our ldea

» Speculative execution leaks information because it updates parts of the
system in ways that can be measured:
o Installs and evicts cache lines.
o Updates the TLB.
o Triggers the Prefetcher.
o Changes the DRAM state.

o Coherence.
o...

» Our idea: Don’t do these things until the instruction is no longer speculative.
» We focus on the caches, specifically load accesses. Not just for Spectre &
Meltdown.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

No Speculation (Delay)

» Delay loads until they are no longer =

speculative. Baseline

GMean is for all
benchmarks, not
just the ones

» Essentially, disable speculation for ...
loads.
» Baseline is a regular OoO

displayed here.
Processor. o
» -40% performance, +30% energy |
0.0 - | ‘ ‘ ‘ ‘ ‘
. &QQ oq’o
X « &

Qo

Normalized IPC

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 5

Invisible Speculation: Ghosts

» Uncacheable Loads.

mm delay

- ghost Baseline

» Do not update the LRU, TLB, etc. o
» Do not participate in coherence. 0s-

» Are only allowed to update fully

associative or randomised structures. "
» Prefetches triggered by Ghosts are e

also Ghosts (more in the next slides). 7
» Performance is even worse than

delay. 00- |
» 18x DRAM reads (over baseline). : ¥ N s

Normalized IPC

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 6

Ghost Buffer (GhB)

» Ghost Buffer: A small cache only for

mm delay B ghost+ghb

o
©

Normalized IPC
o
()]

=}
IS

Ghosts. g = ghost Baseline
» 8x64b = 512 bytes for the L1. 7
o Bigger for L2, L3, etc. |
» Read-only. s
» Fully associative, or otherwise .
randomized.
» One per cache, attached.

» Stores Ghost prefetches. v
» Slightly better than delay.

fov,_

%
K2
{(b
© O

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 7

Materialization (Mtz)

» At commit, “replay” the load.

mm delay B ghost+ghb

mm ghost ghost+mtz Baseline

» Update the LRU.

» |f possible, use the Ghost Buffer to **
install data into the cache.

>» Etc...

» Quite often, by the time the Mtz
packet reaches the cache, the data “*
is already there.

0.6 -

Normalized IPC

0.4 -

0.0 -

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 8

Final Solution: Ghosts + GhB + Mtz

» Regular Mtz

o|nstalls data from the GhB,
otherwise goes to memory. .

» No-Request Mtz

oOnly installs data from the GhB,
never goes to memory.

Normalized IPC
()]

>

N

» Final results: -12% performance 02

loss, 8% energy increase.

0.0 -

» Main performance suspect: MLP

1.0 -

mm delay
mmm ghost

B ghost+ghb
ghost+mtz

mm ghost+mtz+ghb
ghost+mtz+ghb+noreq

®
\

0.6 -

0.4 -

& oD R
(4 X2 X0
N AN ()
Q’b \Q/") é\(\ 0\“

>

v o
Q 2
0 > (2
o
\@*

Qo

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 9

Full Results: Performance

BN delay ®W ghost WM ghost+ghb ghost+mtz = ghost+mtz+ghb ghost+mtz+ghb+noreq

1.0 Baseline
0.8 -
O
o
°
©
€
—
o
=2
0.4 -
0.2 - u
0.0 - \]
'DQ co ‘0 N &L S & b5 io K N i
N \Q@’b ,bé‘ e° ‘06‘ ‘&(X zg\ (\"’ $ R ‘(\& & £ & e v\9 &(\ 3 eq &
Q v Q (&) Q}Q N AN o
& o R

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

10

Full Results: Performance

BN delay ®W ghost WM ghost+ghb ghost+mtz = ghost+mtz+ghb ghost+mtz+ghb+noreq
1.0 - Baseline
0.8-
O
=
o
©
S
—_
o
=2
0.4-
0.2-
0.0- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Qv & & & R Q & D Q> N o Q,ﬂ Qq ,\O Q q,ﬂ <
’L\Q [¢) ’bA ((\Q/ < o § Q2 fo& ‘0& Q\ \,‘) B‘ 00 N é’Q & N 00
NS & PN o P S © xS >
& @ A é\{’ < - 2 QNN 0@0 9Q &

& Delay better than Ghosts

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 10

Full Results: Energy (McPAT)

5 00 - 11x_ 2.3x

n n
B delay ghost B ghost+ghb ghost+mtz m ghost+mtz+ghb ghost+mtz+ghb+noreq

1.75 -

1.50 -

= =

o N

S} [}
1

Normalized Energy Usage
2
w

0.50 -

0.25 -

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

11

Summary

» Speculative execution leaks information by changing the state.
» We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

» Cost of security: only -12% IPC, +8% energy.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

12

Summary

» Speculative execution leaks information by changing the state.
» We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

» Cost of security: only -12% IPC, +8% energy.

Next Steps

» Do we need to secure all loads?
» How can we further improve performance?
» Predictor for Delay vs. Ghosts.

» Predictor for Materialization.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

12

Summary

» Speculative execution leaks information by changing the state.
» We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

» Cost of security: only -12% IPC, +8% energy.

Next Steps

» Do we need to secure all loads?
» How can we further improve performance?
» Predictor for Delay vs. Ghosts.

» Predictor for Materialization.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

12

Ratio of Loads Executed Speculatively

1.0 - W baseline I delay [ghost WM ghost+ghb ghost+mtz B ghost+mtz+ghb ghost+mtz+ghb+noreq
0.8 -
S
© 0.6 -
o
|
)
n
o
<
© 0.4 -
0.2 -
0.0- 1
v % > 2 NG Q NP > S N + < O Q& & o & Q
R % \2 2 “ & N2 ¢ &K S < & N G
& § S r§°® &R \)o)é‘ 0((\’0 6?,0 5° (\’b((\ S &6\ o c§<<> & q,@‘ & & @
N & P S S S < & S
& OQ/ \\0

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

14

L1 Miss Ratio

0.7 -

I baseline Il delay I ghost W ghost+ghb ghost+mtz =@ ghost+mtz+ghb ghost+mtz+ghb+noreq
0.6 -
0.5 -
°
T
CI:0.4-
%)
R0
=
0 0.3-
—
-
0.2 -
0.1-]
0.0 - ‘II II : JII : | ‘*I : |.*. : : l l il“l—l
F & @& P & ér QQ' «Q N & 2 6" “
Gy &N @ e@@\@%oQ\@\ é"@b“o(\\"‘@‘} &
© &g 4?9 & & @ T 2 & 9 @é S & o« (,Q &
& OQ/ \\0

christos.sakalis@it.uu.se | Uppsala Architecture Research Team 15

L1 MSHR Hits & Misses

1le9
Normal Misses
Normal Hits
Ghosts Misses
0.8 - Ghost Hits
0.4 -
0.2 - I

o
[e)]
1

L1D MSHR Hits/Misses

-IJJJLLJJLJ-JJ

L

mcf -

1 | | | | 1 1 1 1 1 1 1 1 1 1 1
N n 0 S} o %] ko) X x = b [©] “— x
o [} 0 = £ [} = M E o] = [} c E € o e € Q_ m E c
= > [0} = © a] = S I o =) c Q iy + =
N o £ 0 c < 2 © o o o Y o =] < o - 7] % <
& : 5 s 5 % g ¢ s 8§ 3 E " % 5 g = £ &

a () N = B <@ o < € S < IS

> % 5 £ °

(9] (G] =

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

