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Speculative Out-of-Order Execution

» Try to execute any available

instruction. ROB
» Hide any “visible” side-effects until _

everything is fine. T
» |f something goes wrong, squash. - Not executed
» Squashing will not undo any _

“invisible side-effects”, such as - Speculatively executed

changes to the cache.

- Long latency

x Squashed
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Spectre & Meltdown

» Spectre “guides” speculative execution by training the branch predictor.
» Meltdown uses speculative execution to leak memory addresses:

o Speculative instructions bring cache lines into the cache.

o Timing attacks can determine in which set cache lines are installed.

o Address can be inferred based on the set.
» The addresses can be used to infer data:

oHave the address determined based on the data. . '

ESS —
» Lot’s of other attacks have been surfacing since... e
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Our ldea

» Speculative execution leaks information because it updates parts of the
system in ways that can be measured:
o Installs and evicts cache lines.
o Updates the TLB.
o Triggers the Prefetcher.
o Changes the DRAM state.

o Coherence.
o...

» Our idea: Don’t do these things until the instruction is no longer speculative.
» We focus on the caches, specifically load accesses. Not just for Spectre &
Meltdown.
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No Speculation (Delay)

» Delay loads until they are no longer =

speculative. Baseline

GMean is for all
benchmarks, not
just the ones

» Essentially, disable speculation for ...
loads.
» Baseline is a regular OoO

displayed here.
Processor. o
» -40% performance, +30% energy |
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Normalized IPC
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Invisible Speculation: Ghosts

» Uncacheable Loads.

mm delay

- ghost Baseline

» Do not update the LRU, TLB, etc. o
» Do not participate in coherence. 0s-

» Are only allowed to update fully

associative or randomised structures. "
» Prefetches triggered by Ghosts are e

also Ghosts (more in the next slides). 7
» Performance is even worse than

delay. 00- |
» 18x DRAM reads (over baseline). : ¥ N s

Normalized IPC
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Ghost Buffer (GhB)

» Ghost Buffer: A small cache only for

mm delay B ghost+ghb

o
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Normalized IPC
o
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Ghosts. g = ghost Baseline
» 8x64b = 512 bytes for the L1. 7
o Bigger for L2, L3, etc. |
» Read-only. s
» Fully associative, or otherwise .
randomized.
» One per cache, attached.

» Stores Ghost prefetches. v
» Slightly better than delay.
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Materialization (Mtz)

» At commit, “replay” the load.

mm delay B ghost+ghb

mm ghost ghost+mtz Baseline

» Update the LRU.

» |f possible, use the Ghost Buffer to  **
install data into the cache.

>» Etc...

» Quite often, by the time the Mtz
packet reaches the cache, the data “*
is already there.
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Normalized IPC

0.4 -

0.0 -
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Final Solution: Ghosts + GhB + Mtz

» Regular Mtz

o|nstalls data from the GhB,
otherwise goes to memory. .

» No-Request Mtz

oOnly installs data from the GhB,
never goes to memory.

Normalized IPC
()]

>

N

» Final results: -12% performance 02

loss, 8% energy increase.
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» Main performance suspect: MLP
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Full Results: Performance

BN delay ®W ghost WM ghost+ghb ghost+mtz = ghost+mtz+ghb ghost+mtz+ghb+noreq

1.0 Baseline
0.8 -
O
o
°
©
€
—
o
=2
0.4 -
0.2 - u
0.0 - \ ]
'DQ co ‘0 N &L S & b5 io K N i
N \Q@’b ,bé‘ e° ‘06‘ ‘&(X zg\ (\"’ $ R ‘(\& & £ & e v\9 &(\ 3 eq &
Q v Q (&) Q}Q N AN o
& o R

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

10



Full Results: Performance

BN delay ®W ghost WM ghost+ghb ghost+mtz = ghost+mtz+ghb ghost+mtz+ghb+noreq
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Full Results: Energy (McPAT)
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Summary

» Speculative execution leaks information by changing the state.
» We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

» Cost of security: only -12% IPC, +8% energy.
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Summary

» Speculative execution leaks information by changing the state.
» We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

» Cost of security: only -12% IPC, +8% energy.

Next Steps

» Do we need to secure all loads?
» How can we further improve performance?
» Predictor for Delay vs. Ghosts.

» Predictor for Materialization.
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Ratio of Loads Executed Speculatively
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L1 Miss Ratio
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L1 MSHR Hits & Misses
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