
Uppsala University | it.uu.se

Ghost Loads: What Is the
Cost of Invisible Speculation?

Christos Sakalis
Mehdi Alipour

Alberto Ros (@ University of Murcia)
Stefanos Kaxiras

Alexandra Jimborean
Magnus Själander (@ NTNU Norway)

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Not executed

Speculatively executed

Long latency

ROB

Squashed

➤ Try to execute any available
instruction.

➤Hide any “visible” side-effects until
everything is fine.

➤ If something goes wrong, squash.

➤Squashing will not undo any

“invisible side-effects”, such as
changes to the cache.

Speculative Out-of-Order Execution

!2

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Not executed

Speculatively executed

Long latency

ROB

Oops!

Squashed

➤ Try to execute any available
instruction.

➤Hide any “visible” side-effects until
everything is fine.

➤ If something goes wrong, squash.

➤Squashing will not undo any

“invisible side-effects”, such as
changes to the cache.

Speculative Out-of-Order Execution

!2

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Spectre & Meltdown
➤Spectre “guides” speculative execution by training the branch predictor.

➤Meltdown uses speculative execution to leak memory addresses:

○Speculative instructions bring cache lines into the cache.

○Timing attacks can determine in which set cache lines are installed.

○Address can be inferred based on the set.

➤ The addresses can be used to infer data:

○Have the address determined based on the data.

➤ Lot’s of other attacks have been surfacing since…

!3

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Our Idea
➤Speculative execution leaks information because it updates parts of the

system in ways that can be measured:

○ Installs and evicts cache lines.

○ Updates the TLB.

○ Triggers the Prefetcher.

○ Changes the DRAM state.

○ Coherence.

○…

➤Our idea: Don’t do these things until the instruction is no longer speculative.

➤We focus on the caches, specifically load accesses. Not just for Spectre &

Meltdown.

!4

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

No Speculation (Delay)

Baseline

➤Delay loads until they are no longer
speculative.

➤ Essentially, disable speculation for
loads.

➤Baseline is a regular OoO
processor.

➤ -40% performance, +30% energy

!5

GMean is for all
benchmarks, not

just the ones
displayed here.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Invisible Speculation: Ghosts

Baseline

➤ Uncacheable Loads.

➤ Do not update the LRU, TLB, etc.

➤ Do not participate in coherence.

➤ Are only allowed to update fully

associative or randomised structures.

➤ Prefetches triggered by Ghosts are

also Ghosts (more in the next slides).

➤ Performance is even worse than

delay.

➤ 18x DRAM reads (over baseline).

!6

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Ghost Buffer (GhB)

Baseline

➤Ghost Buffer: A small cache only for
Ghosts.

➤ 8x64b = 512 bytes for the L1.

○ Bigger for L2, L3, etc.

➤Read-only.

➤ Fully associative, or otherwise

randomized.

➤One per cache, attached.

➤Stores Ghost prefetches.

➤Slightly better than delay.

!7

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Materialization (Mtz)

Baseline

➤At commit, “replay” the load.

➤Update the LRU.

➤ If possible, use the Ghost Buffer to

install data into the cache.

➤ Etc…

➤Quite often, by the time the Mtz

packet reaches the cache, the data
is already there.

!8

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Final Solution: Ghosts + GhB + Mtz

Baseline
-12%

➤Regular Mtz

○ Installs data from the GhB,

otherwise goes to memory.

➤No-Request Mtz

○Only installs data from the GhB,

never goes to memory.

➤ Final results: -12% performance

loss, 8% energy increase.

➤Main performance suspect: MLP

!9

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Full Results: Performance

!10

Baseline

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Full Results: Performance

!10

Delay better than Ghosts

Baseline

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Full Results: Energy (McPAT)

!11

11x 2.3x

Baseline

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Summary
➤Speculative execution leaks information by changing the state.

➤We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

➤Cost of security: only -12% IPC, +8% energy.

!12

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Summary
➤Speculative execution leaks information by changing the state.

➤We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

➤Cost of security: only -12% IPC, +8% energy.

!12

Next Steps
➤Do we need to secure all loads?

➤How can we further improve performance?

➤Predictor for Delay vs. Ghosts.

➤Predictor for Materialization.

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Summary
➤Speculative execution leaks information by changing the state.

➤We can prevent that by using Ghosts + a Ghost Buffer + Materialization.

➤Cost of security: only -12% IPC, +8% energy.

!12

Next Steps
➤Do we need to secure all loads?

➤How can we further improve performance?

➤Predictor for Delay vs. Ghosts.

➤Predictor for Materialization. Th

e E
nd

Uppsala University | it.uu.se

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

Ratio of Loads Executed Speculatively

!14

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

L1 Miss Ratio

!15

christos.sakalis@it.uu.se | Uppsala Architecture Research Team

L1 MSHR Hits & Misses

!16

