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SCONE:	Application-Oriented	Security
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Objective: Ensure integrity and confidentiality of applications
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Threat	Model
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Implication:	OS-based	Access	Control	Insufficient

�4

Application

service provider administrator 

(root, application rights)

client secret

dump  
memory

attacker

system administrator 

(root, hardware access)

https://sconedocs.github.io



We	need	a	cryptographic	approach!
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SCONE:	E2E	encryption	without	source	code	changes
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Languages:	C,	C++,	Go,	Rust,	Java,	Python,	R,	…



Distributed	Applications	-	spread	across	clouds
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How	do	we	know	that	correct	code	executes?
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➤ Use TLS to authenticate 

➤ server app 

➤ client app 

➤ We ensure that only app 
with 

➤ „correct code“ has 
access to TLS certificate

Approach:	All	communication	is	encrypted	(TLS)
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Transparent	Attestation	during	Startup
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certificate: proves that application 

• executes correct code,  

• has the correct file system state, and 

• in the correct OS environment, …

Configuration	&	  
Attestation 
Service
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Transparent	P2P	Attestation	via	TLS
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We run our internal CA and only components belonging to the 
same app can talk to each other …

Certificate	Authority	
(integrated	in	CAS)
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Secrets	Management

• SCONE	has	integrate	secrets	management	
• SCONE	can	inject	secrets	into	

• CLI	arguments	
• environment	variables	
• files	(encrypted)
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Example:	MariaDB
• Supports	encryption	of	database	
• Encryption	key	of	database	stored	in	config	
file	

• file	protected	via	OS	access	control	
• file	is	not	encrypted	

• SCONE:	
• instead	of	key,	store	a	variable	in	config:		

• $$SCONECAS:MARIADBKEY$$	
• SCONE	transparently	replaces	variable	by	
its	value	(i.e.,	the	key)	
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Management	of	Secrets
• Keys	can	be	protected	from	any	human	access	

• only	attested	programs	get	access	
• To	change	security	policy,	approval	by	

• by	a	group	of	humans,	and/or	
• a	group	of	programs	is	required
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policy change

ok?

policy board

approval
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Current	Implementation

• Intel	SGX	protects	
application’s	

• confidentiality	
• integrity	

• by	preventing	accesses	to		
• application	state	in	
cache	and	

• encrypting	main	memory	
• SGX	is	a	TEE		(Trusted	
Execution	Environment)
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Application

SCONE libraries
Application libraries

Intel SGX enclave

SGX (Software Guard eXtensions) protects  
application from accesses by other software

host

Operating system

Container Engine

Hypervisor
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Defender’s	Dilemma

• Attackers: 
• success	by	exploiting	a	
single	vulnerability		

• Defender: 
• must	protect	against	
every	vulnerability	

• system	software	&	
application	

• millions	of	lines	of	
source	code
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SCONE	platform:	Designed	for	multiple	Architectures
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Portability through cross-compilation

https://sconedocs.github.io



Enclave

Enclave

Enclave

Use	Case:	SCONE-PySpark
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Latency
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Lower	
the	better

	<	22	%		overhead	compared	to	native	execution
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