
SCONE:	Secure	Container	
Technology	&	Secrets	Management	

Sept	2018

Christof	Fetzer,	TU	Dresden

https://sconedocs.github.io

SCONE:	Application-Oriented	Security

�2

Application

Objective: Ensure integrity and confidentiality of applications

Data Computation Communication

attacker

client

https://sconedocs.github.io

Threat	Model

�3

Application attacker

system administrator

(root, hardware access)

service provider administrator

(root, application rights)

client

https://sconedocs.github.io

Implication:	OS-based	Access	Control	Insufficient

�4

Application

service provider administrator

(root, application rights)

client secret

dump  
memory

attacker

system administrator

(root, hardware access)

https://sconedocs.github.io

We	need	a	cryptographic	approach!

�5

Application

service provider administrator

(root, application rights)

client
crypto

TLS attacker

system administrator

(root, hardware access)

https://sconedocs.github.io

SCONE:	E2E	encryption	without	source	code	changes

�6

Application
- protected by

SCONE -

service provider administrator

(root, application rights)

client
crypto

TLS attacker

[SCONE] OSDI2016

system administrator

(root, hardware access)

Languages:	C,	C++,	Go,	Rust,	Java,	Python,	R,	…

Distributed	Applications	-	spread	across	clouds

�7

App

service provider administrator

(root, application rights)

client
TLS attacker

App

App

ba
ck

en
dedge service

backend cloud

regional cloud

Initial Focus:
Cloud Native Applications

system administrator

(root, hardware access)

How	do	we	know	that	correct	code	executes?

�8

App

service provider administrator

(root, application rights)

client
TLS attacker

App

App

ba
ck

en
d

controls

We need to attest that the

correct code is running!

system administrator

(root, hardware access)

https://sconedocs.github.io

➤ Use TLS to authenticate

➤ server app

➤ client app

➤ We ensure that only app
with

➤ „correct code“ has
access to TLS certificate

Approach:	All	communication	is	encrypted	(TLS)

https://sconedocs.github.ioTLS: Transport Layer Security

Transparent	Attestation	during	Startup

�10

certificate: proves that application

• executes correct code,

• has the correct file system state, and

• in the correct OS environment, …

Configuration	&	  
Attestation 
Service

https://sconedocs.github.io

Transparent	P2P	Attestation	via	TLS

�11

We run our internal CA and only components belonging to the
same app can talk to each other …

Certificate	Authority	
(integrated	in	CAS)

https://sconedocs.github.io

Secrets	Management

• SCONE	has	integrate	secrets	management	
• SCONE	can	inject	secrets	into	

• CLI	arguments	
• environment	variables	
• files	(encrypted)

�12
https://sconedocs.github.io

Example:	MariaDB
• Supports	encryption	of	database	
• Encryption	key	of	database	stored	in	config	
file	

• file	protected	via	OS	access	control	
• file	is	not	encrypted	

• SCONE:	
• instead	of	key,	store	a	variable	in	config:		

• $$SCONECAS:MARIADBKEY$$	
• SCONE	transparently	replaces	variable	by	
its	value	(i.e.,	the	key)	

�13 https://sconedocs.github.io

Management	of	Secrets
• Keys	can	be	protected	from	any	human	access	

• only	attested	programs	get	access	
• To	change	security	policy,	approval	by	

• by	a	group	of	humans,	and/or	
• a	group	of	programs	is	required

�14

policy change

ok?

policy board

approval

https://sconedocs.github.io

Current	Implementation

• Intel	SGX	protects	
application’s	

• confidentiality	
• integrity	

• by	preventing	accesses	to		
• application	state	in	
cache	and	

• encrypting	main	memory	
• SGX	is	a	TEE		(Trusted	
Execution	Environment)

�15

Application

SCONE libraries
Application libraries

Intel SGX enclave

SGX (Software Guard eXtensions) protects  
application from accesses by other software

host

Operating system

Container Engine

Hypervisor

https://sconedocs.github.io

Defender’s	Dilemma

• Attackers:
• success	by	exploiting	a	
single	vulnerability		

• Defender:
• must	protect	against	
every	vulnerability	

• system	software	&	
application	

• millions	of	lines	of	
source	code

�16

Application

SCONE libraries
Application libraries

Intel SGX enclave

host

Operating system

Container Engine

Hypervisor

millions of

lines of codes
(hundreds  
of bugs)

200k lines

https://sconedocs.github.io

SCONE	platform:	Designed	for	multiple	Architectures

�17

portable
code

Intel AMD ARM

SGX main memory  
encryption

main memory  
encryption

???

SCONE:

no source code changesSCONE:

gcc-based crosscompiler

SCONE cro
ssc

ompiler

Portability through cross-compilation

https://sconedocs.github.io

Enclave

Enclave

Enclave

Use	Case:	SCONE-PySpark

�18

D
istributed	D

ata	Store

Py4J

Pipe

Pipe

Pipe

Python

Java

Driver

Worker

Enclave
TLS/S

SL

TLS/SSL

TLS/SSL

TLS/SSL

TLS/SSL

TLS/SSL

https://sconedocs.github.io

Latency

�19

Lower	
the	better

	<	22	%		overhead	compared	to	native	execution

SCONE

https://sconedocs.github.io

�20
https://sconedocs.github.io

