# Hound: Causal Learning for Datacenter-Scale Straggler Diagnosis

Benjamin C. Lee



P. Zheng and B.C. Lee. Proc. of the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS), June 2018.

# **Stragglers in Datacenter Computation**

#### Task Parallelism

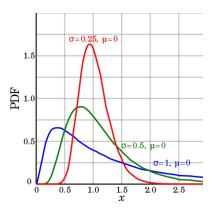
Split jobs into parallel tasks Aggregate task results

#### Stragglers

Exhibit atypically poor performance Delay job completion

#### Example

Extend completion time by 50% in 20% of Google jobs



# **Mitigating Stragglers**



#### Speculative Scheduling

Clone tasks on different machine Avoid machines predicted to underperform

## Inefficient Clones Consume resources inefficiently *E.g.*, Data skew across tasks

### **Causal Diagnoses**

Rely on expertise, domain knowledge Fail to scale, laborious

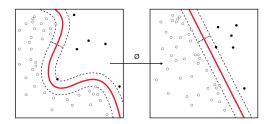
# Machine Learning for Diagnosis

#### **Profile Datacenters**

System monitors track task, job events Hardware counters track microarchitectural activity

## **Reveal Stragglers' Causes**

Allocation and scheduling Colocation and interference



## Desiderata from Machine Learning

#### **Datacenter-Scale Insight**

Extract patterns across jobs' disparate models

#### Interpretable Models

Codify domain expertise, interpretable insight

#### **Unbiased Inference**

Reduce risks of false causal explanations

#### **Computational Efficiency**

Design models with scalable implementation

### 1. Base Learning for Jobs

Associate performance with system conditions

### 2. Meta Learning for Datacenter

Discover recurring, interpretable causes at scale

## 3. Ensemble Learning

Reconcile results from independent learners

### 1. Base Learning for Jobs

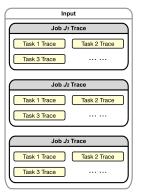
### Associate performance with system conditions

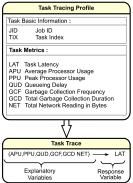
2. Meta Learning for Datacenter Discover recurring, interpretable causes at scale

## 3. Ensemble Learning

Reconcile results from independent learners

# **Base Learning**





#### Dataset

Task profiles in job

#### Response

Task latency

#### Predictor

Profiled metrics

#### Models

Logistic regression Dependence models Rubin causal models

## **Rubin Causal Models**

#### **Confounding Bias**

Arises when association between two variables explained by third variable

#### Example

Latency is higher on older processors, but slower memory is confounding

## **Rubin Causal Models**

#### **Confounding Bias**

Arises when association between two variables explained by third variable

#### **Rubin Causal Model**

Estimates effect of  $Z{\in}\{0,1\}$  on R while controlling for X

#### Example

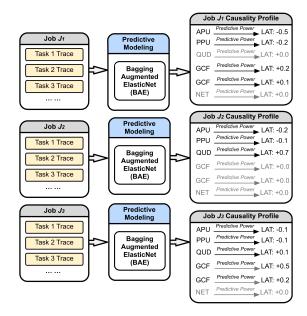
Latency is higher on older processors, but slower memory is confounding

$$\mathbb{E}\left[\frac{ZR}{e(X)}\right] - \mathbb{E}\left[\frac{(1-Z)R}{1-e(X)}\right]$$

$$e(X) = P\{Z = 1 | X\}$$

Observe Z and R from data Estimate e(X)

# **Causality Profiles**



Infer relationship between metrics, job time

Scale to hundreds of metrics, millions of jobs

1. Base Learning for Jobs

Associate performance with system conditions

## 2. Meta Learning for Datacenter

Discover recurring, interpretable causes at scale

3. Ensemble Learning

Combine results from independent learners

# Meta Learning

### Words

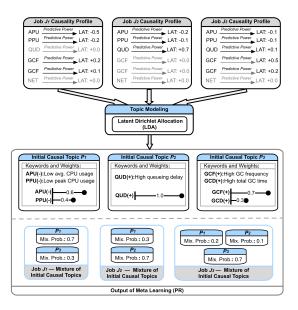
Metrics (+), (-) indicate atypically high, low values

### Topics

Recurring word clusters from causality profiles

#### Diagnoses

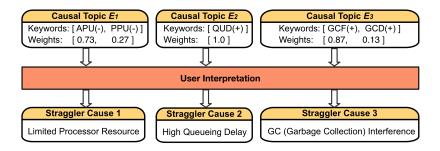
Assign topic mix to jobs



## Interpretable Diagnoses

Topic reveals keywords, weights

System architect interprets cause



1. Base Learning for Jobs

Associate performance with system conditions

2. Meta Learning for Datacenter Discover recurring, interpretable causes at scale

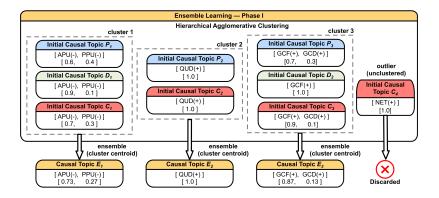
## 3. Ensemble Learning

Reconcile results from independent learners

## **Ensemble Learning**

Construct learners for prediction (P), dependence (D), causation (C)

Drop topics found by one learner



#### 1. Base Learning for Jobs

Associate performance with system conditions

#### 2. Meta Learning for Datacenter

Discover recurring, interpretable causes at scale

### 3. Ensemble Learning

Reconcile results from independent learners

## **Topics from Google Datacenter**

29-day trace of production system

12 K servers for 13 K jobs, 3.3 M tasks

| Topic    | Keywords                         | Weights     | Cluster                  | Interpretation             |
|----------|----------------------------------|-------------|--------------------------|----------------------------|
|          | MEM_ASSIGN(+), MEAN_MEM(+),      | 0.5, 0.25,  |                          |                            |
| $E_0$    | PEAK_MEM(+)                      | 0.25        | $P_0, P_3, D_0, C_0$     | Data Skew                  |
|          | PAGE_CACHE(+), PAGE_CACHE_UM(+), | 0.45, 0.38, |                          |                            |
| $E_1$    | MEM_ASSIGN(+)                    | 0.17        | $P_1, D_1, C_1$          | Data Skew                  |
| $E_2$    | DISK_SPACE(+)                    | 1.0         | $P_2, D_2, C_2$          | Data Skew                  |
| $E_3$    | MEAN_CPU(+), PEAK_CPU(+)         | 0.52, 0.48  | $P_4, D_3, C_3$          | Computation Skew           |
| $E_4$    | PEAK_IO(+), MEAN_IO(+)           | 0.51, 0.49  | $P_5, D_4, C_4$          | I/O Skew                   |
| $E_5$    | MEAN_CPU(-), PEAK_CPU(-)         | 0.8, 0.2    | $P_6, D_5, C_5, C_6$     | Limited Processor          |
| $E_6$    | MEAN_MEM(-), PEAK_MEM(-)         | 0.83, 0.17  | $P_7, D_6, D_7, C_7$     | Limited Memory             |
| $E_7$    | MEAN_IO(-)                       | 1.0         | $D_8, C_8$               | Limited I/O                |
| $E_8$    | PEAK_IO(-), MEAN_IO(-)           | 0.83, 0.17  | $P_8, D_9$               | Limited I/O                |
| $E_9$    | CACHE_MISS(+), CPI(+)            | 0.54, 0.46  | $P_9, D_{10}, C_9$       | Cache Bottleneck           |
| $E_{10}$ | SCHED_DELAY(+)                   | 1.0         | $P_{10}, D_{11}, C_{10}$ | Scheduler (Queueing) Delay |
| $E_{11}$ | EVICT(+)                         | 1.0         | $P_{11}, C_{11}$         | Eviction Delay             |
| $P_{12}$ | FAIL(+)                          | 1.0         | unclustered              | ×                          |
| $C_{12}$ | MACHINE_RAM(+)                   | 1.0         | unclustered              | ×                          |

# **Causal Coverage**

### (Dominant) Coverage

Measures how often cause explains (majority of) stragglers

Differentiates major, minor diagnoses

| Cause                               | Coverage | Dominant Coverage |
|-------------------------------------|----------|-------------------|
| Data Skew $(E_0, E_1, E_2)$         | 73.6%    | 55.0%             |
| Limited Processor (E <sub>5</sub> ) | 39.2%    | 12.1%             |
| Cache Misses $(E_9)$                | 32.6%    | 7.0%              |
| Limited I/O $(E_7, E_8)$            | 36.7%    | 6.6%              |
| Queueing Delay $(E_{10})$           | 20.0%    | 5.1%              |
| Limited Memory $(E_6)$              | 13.6%    | 2.7%              |
| Computation Skew $(E_3)$            | 31.2%    | 2.2%              |
| Eviction Delay $(E_{11})$           | 3.80%    | 0.90%             |
| I/O Skew (E <sub>4</sub> )          | 5.60%    | 0.60%             |

# **Computational Efficiency**

### Complexity is O(NM)

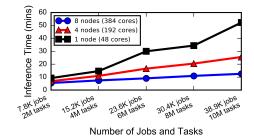
N is number of jobs M is number of tasks per job

#### Implementation

Apache PySpark Spark cluster with eight nodes

#### **Parallel Analysis**

40K jobs, 10M tasks



# Also in the paper...

#### Modeling Methods

Prediction – ElasticNet with Bagging Dependence – Signed Schweizer-Wolff Causation – Inverse Probability Weighting with AdaBoost

#### **Evaluation and Validation**

Visualizing case studies for Google

Comparing to domain expertise from Berkeley



# Hound: Causal Learning for Datacenter-Scale Straggler Diagnosis

Benjamin C. Lee



P. Zheng and B.C. Lee. Proc. of the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS), June 2018.