Energy-Efficient Acceleration of RNNs using CGRA

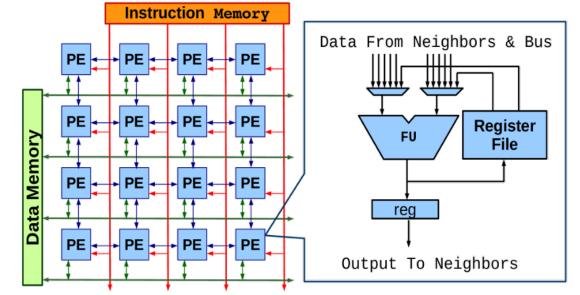
Aviral Shrivastava, Arizona State University

ARM Summit 2018

10/10/18

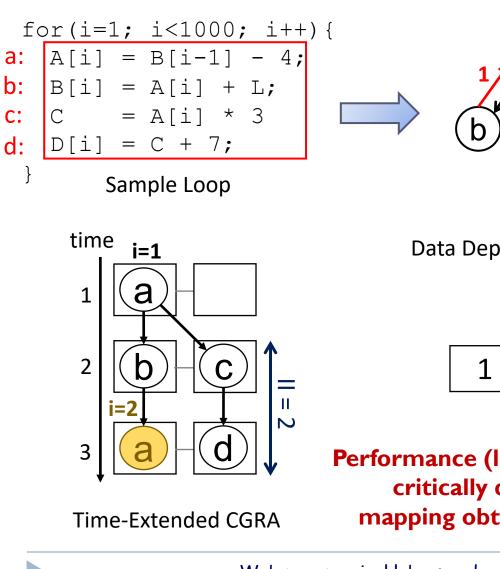
CGRA: Coarse-Grain Reconfigurable Arrays

- An array of Processing Elements (PEs); each PE has ALU-like functional unit that works on an operation at every cycle.
- Array configurations vary in terms of
 - Array SizeReg. File Architectures
 - Functional Units Interconnect Network



- ► CGRAs can achieve power-efficiency of several 10s of GOps/Sec per Watt.
 - > ADRES CGRA chip, up to 60 GOps/sec per Watt [IMEC, HiPEAC 2008]
 - HyCUBE chip, about 63 MIPS/mW [M. Karunaratne et al., DAC 2017]
- Popular in Embedded Systems and Multimedia [Samsung SRP processor]

Mapping Applications on CGRAs



ARM Summit 2018

Data Dependency Graph

Modulo

1

2

1

onto CGRA

Schedule

• 1 ↔ 2

1x2 CGRA

Performance (loop execution time) critically depends on the mapping obtained by compiler

- Iterative Modulo Scheduling Every operation is executed at II cycles.
- Initiation Interval aka II is performance metric.
- Software Pipelining Operations from different iterations can be executed simultaneously. This empowers to accelerate even non-parallel loops through the CGRAs.

CGRAs Becoming a Hotbed of Research

Recently, several techniques and evaluations for CGRAs or CGRA-like spatial architectures have been presented including

- Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures. Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan and others. In ACM TC 2015.
- DRAMA: An Architecture for Accelerated Processing Near Memory. Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow and Nam Sung Kim. In IEEE CAL 2015. [UWisc]
- Control Flow Coalescing on a Hybrid Dataflow/von Neumann GPGPU. Dani Voitsechov Yoav Etsion. In MICRO 2015.
 [Technion, Israel]
- Evaluating Programmable Architectures for Imaging and Vision Applications. Artem Vasilyev, Nikhil Bhagdikar, Ardavan Pedram, Stephen Richardson, Shahar Kvatinsky, Mark Horowitz. In MICRO 2016.
- Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. Yu-Hsin Chen, Joel Emer and Vivienne Sze. In ISCA 2016.
- A space-and energy-efficient code compression/decompression technique for coarse-grained reconfigurable architectures. Bernhard Egger et al. In CGO 2017. [SNU and Samsung]
- Hycube: A cgra with reconfigurable single-cycle multi-hop interconnect. Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra and Li-Shiuan Peh. In DAC 2017. [NUS]

Key Features of CGRA Accelerators

- With software-pipelined execution, CGRA PEs can efficiently accelerate loops with lower parallelism
 - E.g. loops with loop-carried dependence, inter-twined loops, loops with high branch divergence etc.
- Avoids one of the fundamental bottlenecks of Von-Neumann architecture i.e., CGRAs are not subjected to dynamic fetching and decoding of instructions.
 - CGRA instructions are pre-decoded in memory, and PEs transfer data directly among each other, without necessarily going through centralized register file/memory.
- Efficient mapping of loop operations is done by compiler, no programmer intervention is needed.
 - Performance-critical kernels of several irregular applications can benefit from acceleration.



FIG. 21

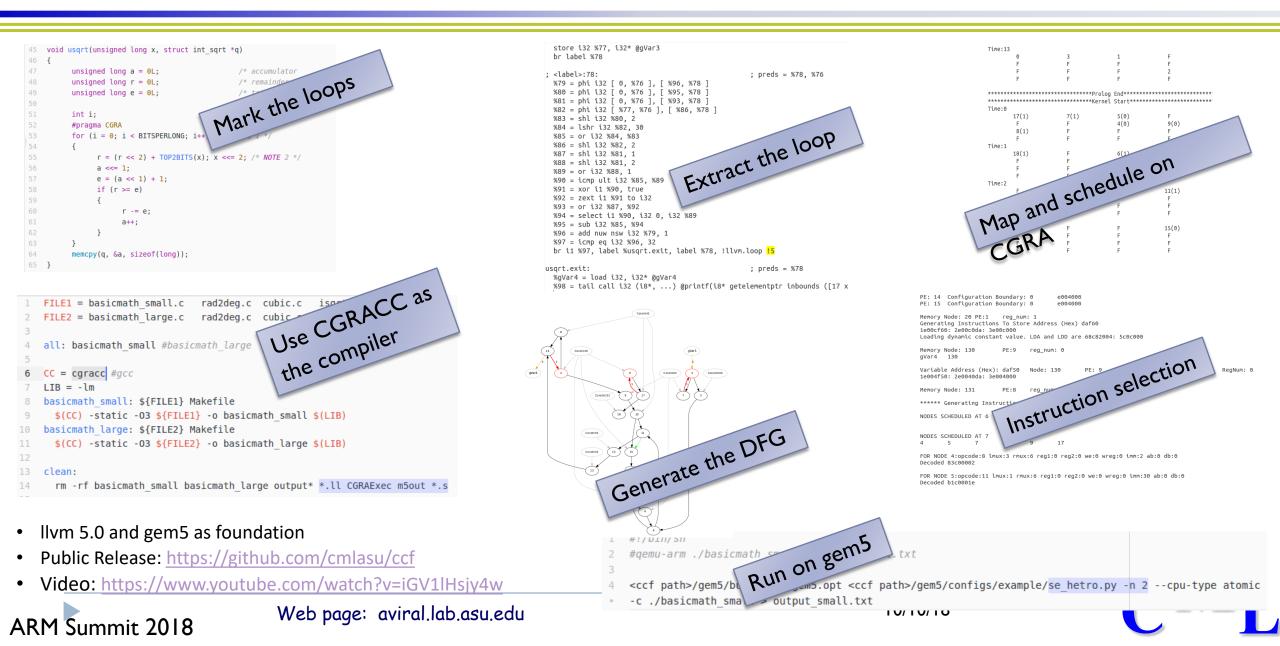
Fig 21 from recent Intel patent on Configurable Spatial Architecture (CSA)

Article:

https://www.nextplatform.com/2018/08/30/intels -exascale-dataflow-engine-drops-x86-and-vonneuman/

Web page: aviral.lab.asu.edu

CCF: CGRA Compiler+simulation Framework



Our Recent Work on Compiling for CGRAs

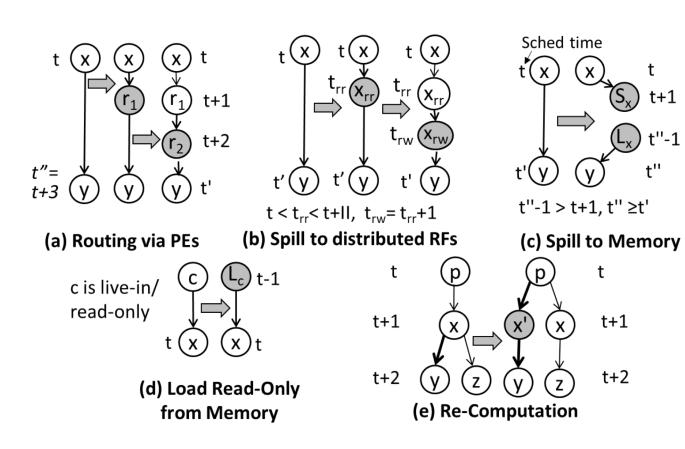
- Efficient software pipeline
 - EPIMap: Using Epimorphism to Map Applications on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and Sarma Vrudhula. In DAC 2012.
- Efficiently using distributed register files
 - REGIMap: Register-aware Application Mapping on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and Sarma Vrudhula. In DAC 2013.
- Register file organization

- URECA: A Compiler Technique to Manage Unified Register File for CGRAs. Shail Dave, Mahesh Balasubramanian and Aviral Shrivastava. In DATE 2018.
- Efficient mapping of if-then-else's
 - LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs. Mahesh Balasubramanian, Shail Dave, Aviral Shrivastava and Reiley Jeyapaul. In DATE 2018.

RAMP [DAC 2018]: Selecting a Routing Alternative

• Various routing strategies

ARM Summit 2018



Failure Analysis

- Dependent operations are scheduled at distant time; managing the data with large lifetime in registers is not possible
 - Route by PEs, Spill to memory/distributed RFs
- Source operand is a live-in value, and cannot be managed in the registers
 - Load the live-in value from the memory
- Dependent operations are scheduled at the consecutive cycles; routing is not possible due to limited interconnect/unavailability of free PEs
 - Re-compute, Route by a PE, Re-schedule

RAMP vs. RegiMap and MemMap

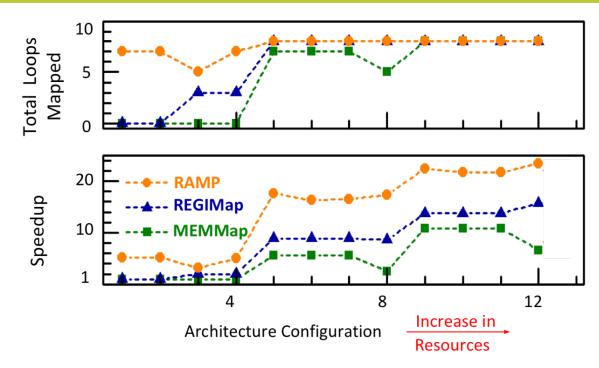
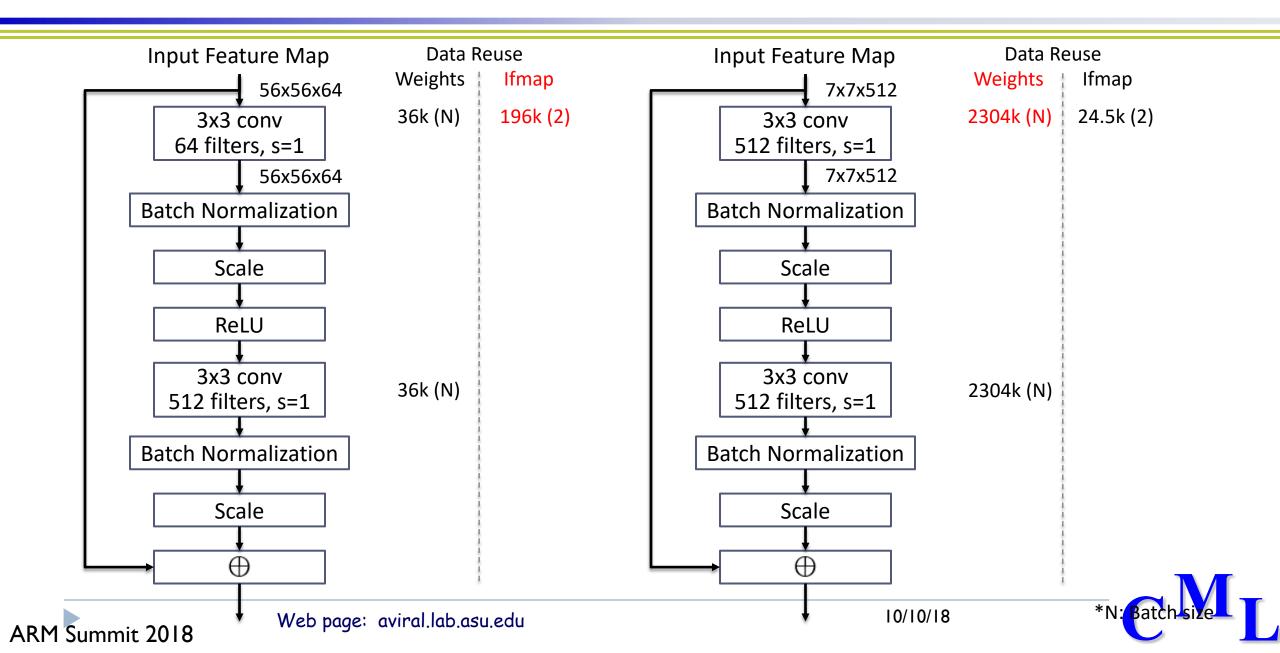


Table 1: Specifications of CGRA architecture configurations

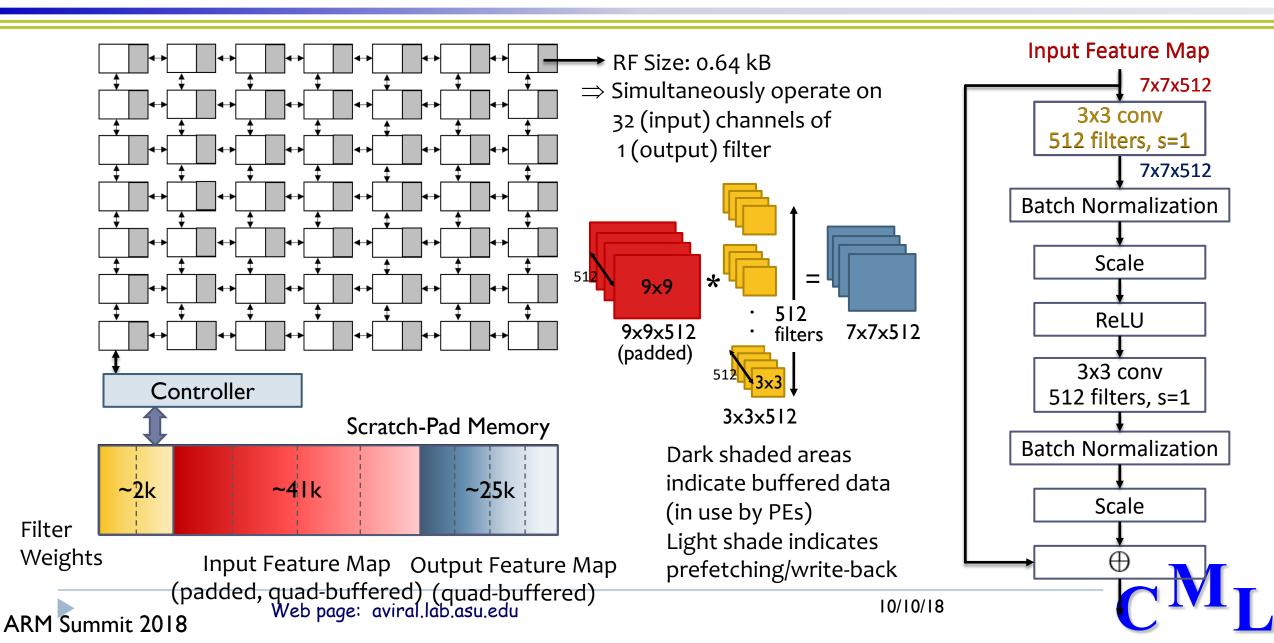
Config. #	Size	RF	Reg. in RF	Memory Units (PEs)	Sharing of Memory Bus
1	2x2	Centralized	16	3, 4	dedicated
2	2x2	Centralized	16		
3	2x2	Local	2	Homo-	shared
4	2x2	Local	4	geneous	among
5	4x4	Centralized	64	PEs	PEs of
6	4x4	Local	2	(All)	a row
7	4x4	Local	4		
8	4x4	Local	4	2,4,6,8	dedicated
9	8x8	Centralized	128	Homo-	shared
10	8x8	Local	4	geneous	among PEs
11	8x8	Local	8	PEs	of a row
12	8x8	Local	8	1,3,5,7,9,11, 13,15,19,21	dedicated

- For the top performance-critical loops from 8 MiBench benchmarks, previous techniques failed to obtain mappings for almost all loops, when highly constrained by the resources.
- RAMP accelerated the top performance-critical loops of 8 embedded applications from MiBench by 23× as compared to sequential execution, and by 2.13× over REGIMap, and by 3.39× over MEMMap.

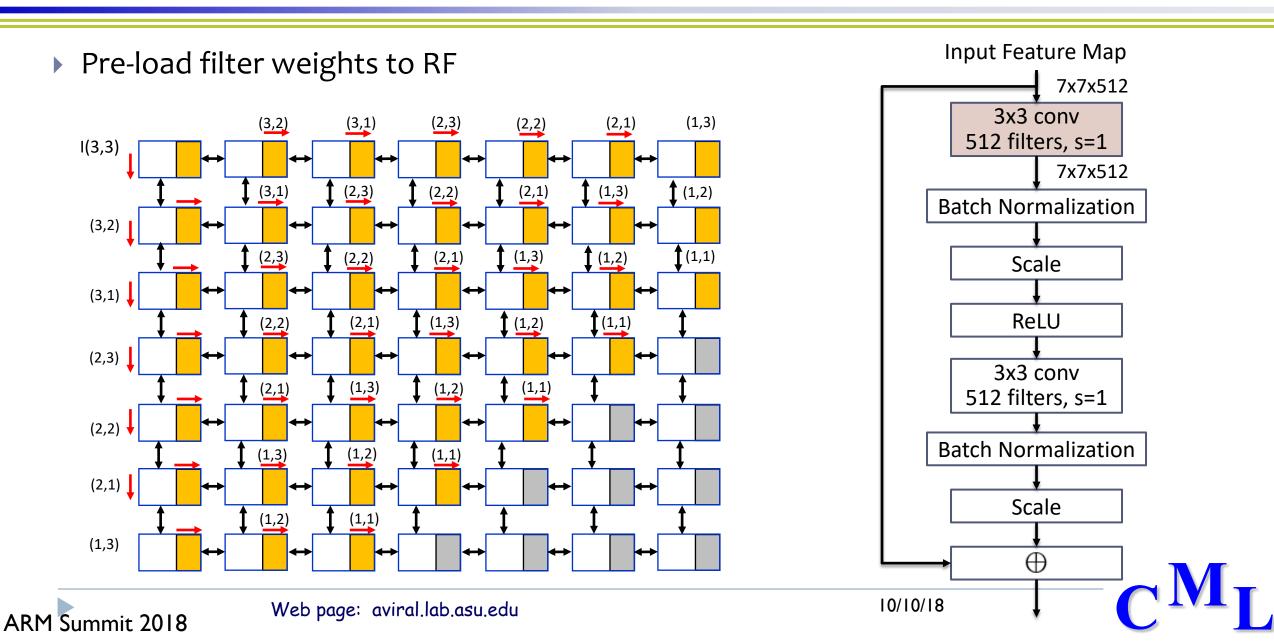
Residual Blocks from ResNet-18



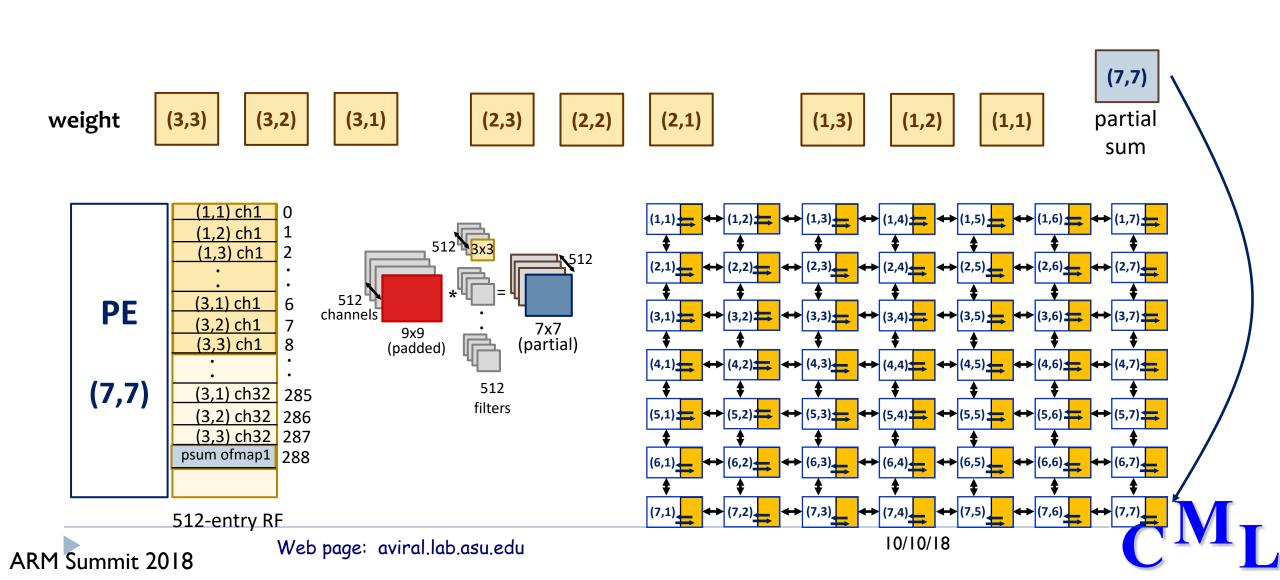
Execution Mechanism for Inference



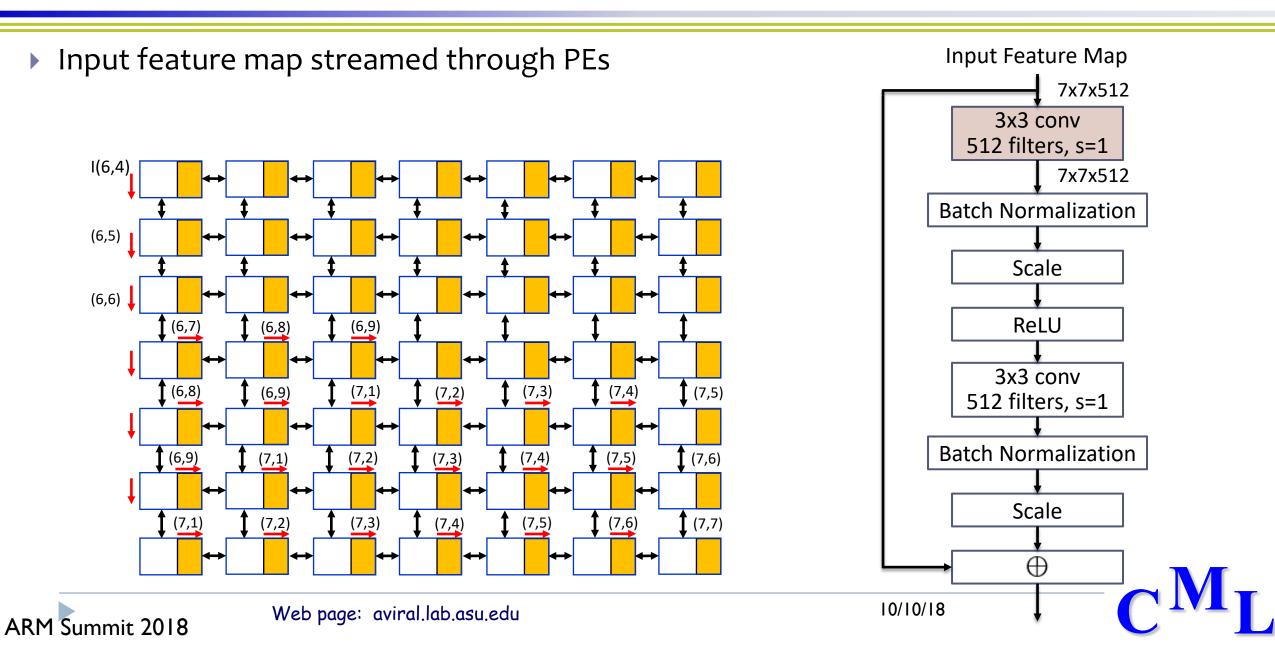
Executing Residual Block on CGRA



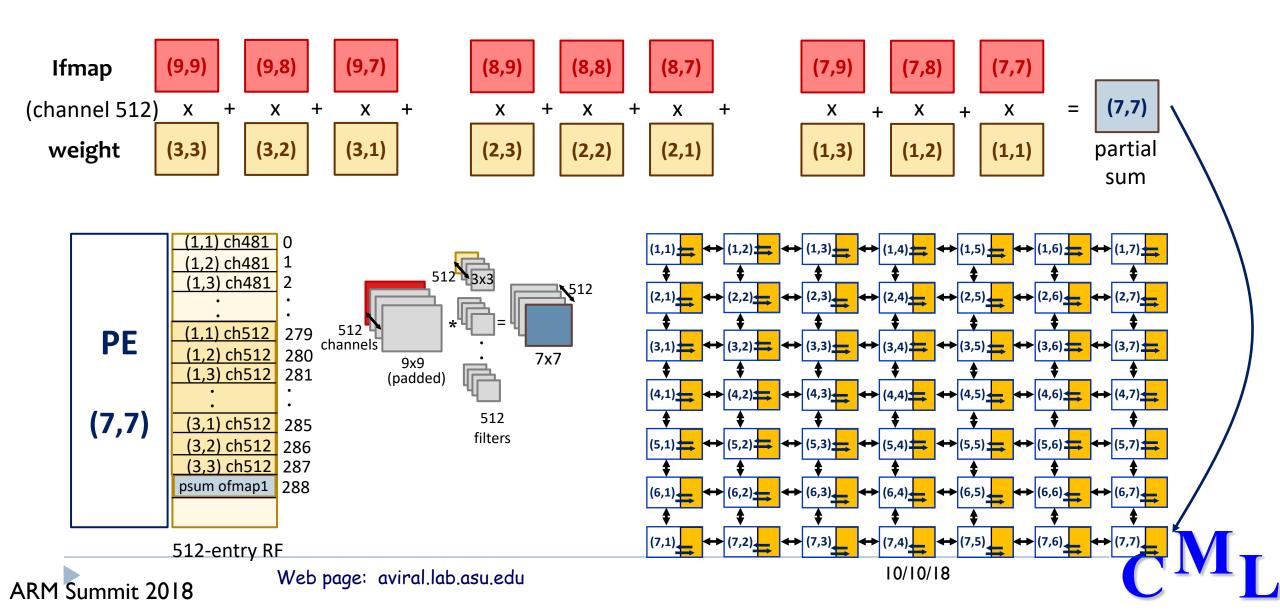
Output Stationary Dataflow for Convolutions



Streaming Feature Maps for MACs

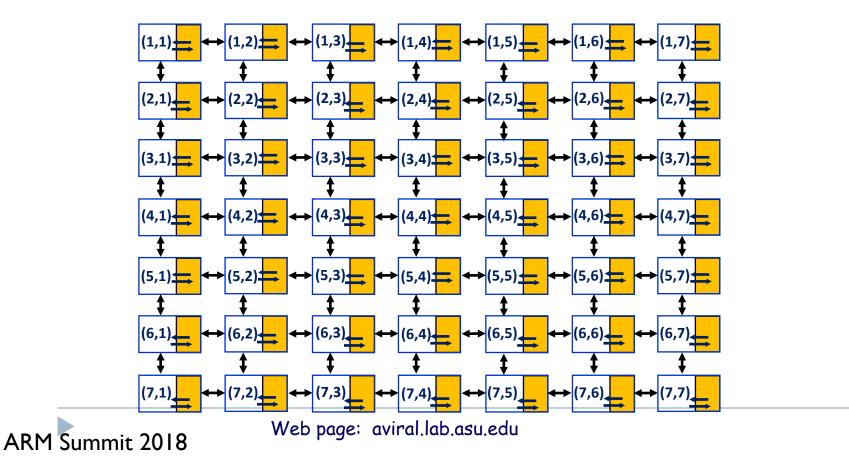


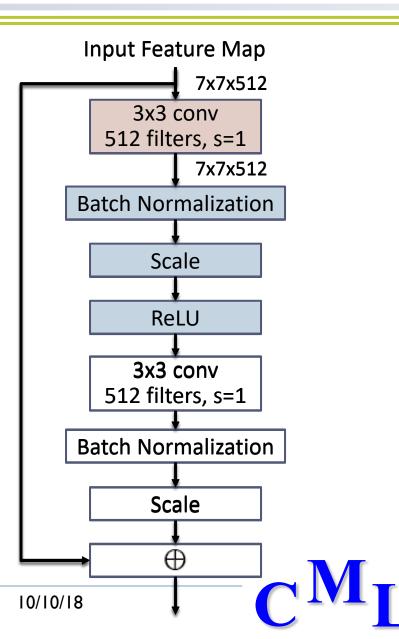
Output Stationary Dataflow for Convolutions



Output Stationary Dataflow for Convolutions

- Input feature map streamed through PEs
 - PEs perform MACs on input data and/or passes to neighboring PES
 - Partial sums stored in the RF
- Batch Normalization, Scaling and ReLU performed before storing output feature map



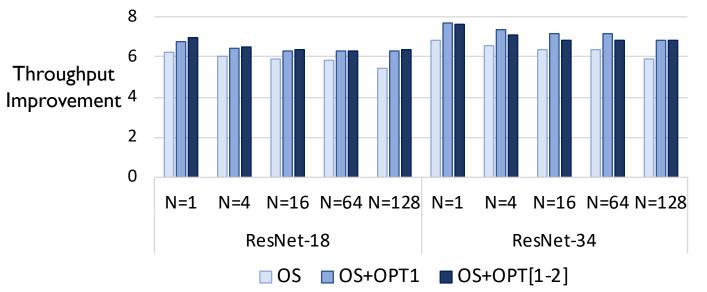


Experimental Setup

- Neural networks evaluated: ResNet-18 and ResNet-34 models
 - Computations on N-dimension feature maps defined in C/C++
- Dataset: ImageNet

- Input feature map: 224x224x3.
- Cycle-count performance comparison of the 2 approaches
 - Baseline: Intel Core i7-870 CPU (2.93GHz, Quad-Core)
 - ▶ 256 kB L1\$, 1 MB L2\$, 8 MB L3\$
 - 8 GB system memory (4 GB DIMMs, DDR3 1.33GHz)
 - Performance measured in terms of execution cycles on a core (linear scaling to 4 cores)
 - Profiling: GNU Perf (stat collection from hardware counters)
 - Compilation with g++ -O3 (aggressive loop optimizations, and auto-vectorization enabled)
 - Algorithmic representation for 4D convolutions
 - © Conventional representation shown in Minimizing Computation in Convolutional Neural Networks by J. Cong et al., in ICANN 2014.
 - Performance model for CGRA (efforts ongoing):
 - In-house C++ simulator (integration with Gem5 ongoing)
 - 4 clusters of PEs; each cluster is mounted with 68kB scratch-pad memory (total 196 PEs)
 - Dataflow execution: Output stationary (streaming data/MAC/compare takes 1 cycle, pipelined)
 - DMA model for scratch-pad memory management: latency (cycles)= 291 + 0.24*bytes

Early Results



N: Batch size
Baseline: Intel i7-870 Quad-core CPU
OS: Output Stationary dataflow for Convolutions
OPT1: Batch normalization, ReLu, pooling on CGRA
OPT2: Software prefetching on SPM enabled through quad-buffering.

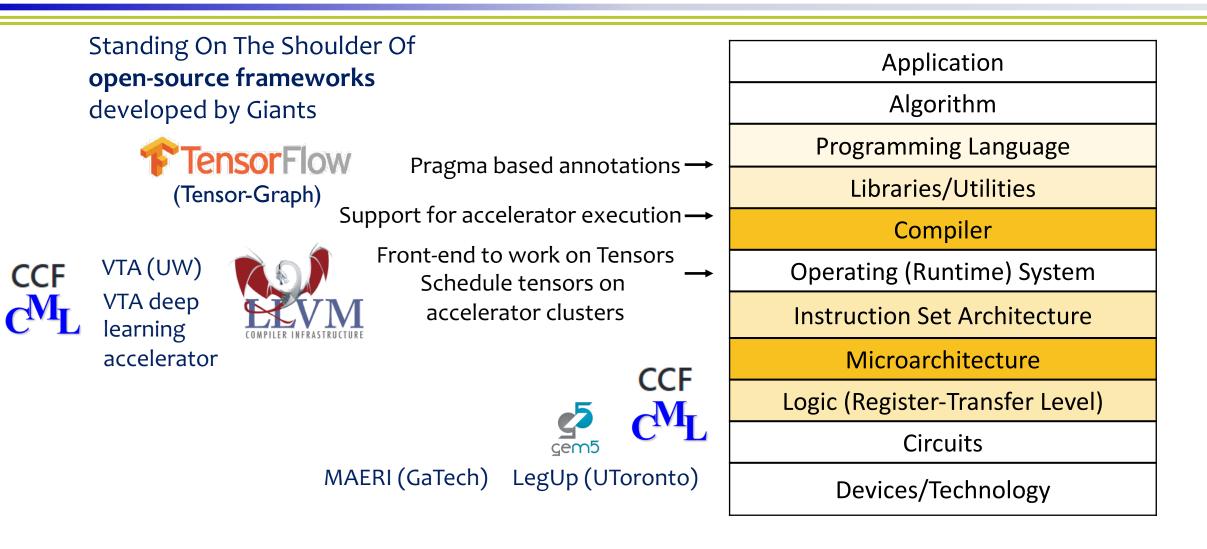
Further Optimizations Possible:

- Interleave partial sum computations across filters instead of channels, i.e., operate on various filters for an input channel, to better reuse input feature maps. ~ 4X speedup over OS+OPT[1-2]
- Design dataflow execution to consider variation in data reuse opportunities (filter weights vs. ifmap for early residual blocks in model)
- Design-space exploration of the architecture for using all-PE communication through input/output FIFOs instead of streaming the data through a single PE.

Computing System Stack [Ongoing]

Web page: aviral.lab.asu.edu

ARM Summit 2018



10/10/18

Summary and Next Steps

Highlights

- DATE 2018 and DAC 2018 papers on CGRA
 - LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs [DATE 2018]
 - RAMP: Resource-Aware Application Mapping on CGRAs [DAC 2018]
- Released the first version of the first open source compiler-simulator toolchain for CGRAs
 - CCF: https://github.com/cmlasu/ccf

Next steps

- Complete simulation model and performance model.
 - Embed energy model (e.g. through McPAT)
- Design space exploration to settle upon the spatially programmable solution and the corresponding dataflow execution.
 - Set the interconnections, RF size, CGRA-SPM to DRAM bandwidth
- Development of a light-weight compiler from tensor flow to the CGRA accelerator.
 - > Integrate routines for accelerator execution and software prefetching to TensorFlow library routines.

