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CGRA: Coarse-Grain Reconfigurable Arrays

} CGRAs can achieve power-efficiency of several 10s of GOps/Sec per Watt.

} ADRES CGRA chip, up to 60 GOps/sec per Watt  [IMEC, HiPEAC 2008]

} HyCUBE chip, about 63 MIPS/mW [M. Karunaratne et al., DAC 2017]   

} Popular in Embedded Systems and Multimedia [Samsung SRP processor]

10/10/18
ARM Summit 2018

} An array of Processing Elements (PEs); 
each PE has ALU-like functional unit that 
works on an operation at every cycle.

} Array configurations vary in terms of –
} Array Size                ► Reg. File Architectures
} Functional Units    ► Interconnect Network
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• Iterative Modulo Scheduling –
Every operation is executed at II
cycles.

• Initiation Interval aka II is
performance metric.

• Software Pipelining –
Operations from different
iterations can be executed
simultaneously. This empowers
to accelerate even non-parallel
loops through the CGRAs.

Mapping Applications on CGRAs
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CGRAs Becoming a Hotbed of Research

Recently, several techniques and evaluations for CGRAs or CGRA-like spatial architectures have been
presented including
} Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures. Michael Pellauer,

Angshuman Parashar, Michael Adler, Bushra Ahsan and others. In ACM TC 2015.

} DRAMA: An Architecture for Accelerated Processing Near Memory. Amin Farmahini-Farahani, Jung Ho Ahn,
Katherine Morrow and Nam Sung Kim. In IEEE CAL 2015. [UWisc]

} Control Flow Coalescing on a Hybrid Dataflow/von Neumann GPGPU. Dani Voitsechov Yoav Etsion. In MICRO 2015.
[Technion, Israel]

} Evaluating Programmable Architectures for Imaging and Vision Applications. Artem Vasilyev, Nikhil Bhagdikar,
Ardavan Pedram, Stephen Richardson, Shahar Kvatinsky, Mark Horowitz. In MICRO 2016.

} Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. Yu-Hsin Chen,
Joel Emer and Vivienne Sze. In ISCA 2016.

} A space-and energy-efficient code compression/decompression technique for coarse-grained reconfigurable
architectures. Bernhard Egger et al. In CGO 2017. [SNU and Samsung]

} Hycube: A cgra with reconfigurable single-cycle multi-hop interconnect. Manupa Karunaratne, Aditi Kulkarni
Mohite, Tulika Mitra and Li-Shiuan Peh. In DAC 2017. [NUS]
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Key Features of CGRA Accelerators

} With software-pipelined execution, CGRA PEs can
efficiently accelerate loops with lower parallelism
} E.g. loops with loop-carried dependence, inter-twined

loops, loops with high branch divergence etc.

} Avoids one of the fundamental bottlenecks of Von-
Neumann architecture i.e., CGRAs are not subjected
to dynamic fetching and decoding of instructions.
} CGRA instructions are pre-decoded in memory, and PEs

transfer data directly among each other, without
necessarily going through centralized register
file/memory.

} Efficient mapping of loop operations is done by
compiler, no programmer intervention is needed.
} Performance-critical kernels of several irregular

applications can benefit from acceleration.
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Fig 21 from recent Intel patent on Configurable 
Spatial Architecture (CSA)

Article: 
https://www.nextplatform.com/2018/08/30/intels
-exascale-dataflow-engine-drops-x86-and-von-
neuman/
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CCF: CGRA Compiler+simulation Framework
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Mark the loops

Use CGRACC as 

the compiler

Extract
 the loop

Generate the DFG

Map and schedule on 

CGRA

Instruction selection

Run on gem5• llvm 5.0 and gem5 as foundation
• Public Release: https://github.com/cmlasu/ccf
• Video: https://www.youtube.com/watch?v=iGV1lHsjy4w

https://github.com/cmlasu/ccf
https://www.youtube.com/watch?v=iGV1lHsjy4w
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Our Recent Work on Compiling for CGRAs

} Efficient software pipeline

} EPIMap: Using Epimorphism to Map Applications on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and 
Sarma Vrudhula. In DAC 2012.

} Efficiently using distributed register files
} REGIMap: Register-aware Application Mapping on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and Sarma

Vrudhula. In DAC 2013.

} Register file organization
} URECA: A Compiler Technique to Manage Unified Register File for CGRAs. Shail Dave, Mahesh Balasubramanian 

and Aviral Shrivastava. In DATE 2018.

} Efficient mapping of if-then-else’s

} LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs. Mahesh 
Balasubramanian, Shail Dave, Aviral Shrivastava and Reiley Jeyapaul. In DATE 2018.
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RAMP [DAC 2018]: Selecting a Routing Alternative

} Failure Analysis
} Dependent operations are scheduled at

distant time; managing the data with large
lifetime in registers is not possible
} Route by PEs, Spill to memory/distributed

RFs
} Source operand is a live-in value, and cannot

be managed in the registers
} Load the live-in value from the memory

} Dependent operations are scheduled at the
consecutive cycles; routing is not possible
due to limited interconnect/unavailability of
free PEs
} Re-compute, Route by a PE, Re-schedule
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• Various routing strategies
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RAMP vs. RegiMap and MemMap

} For the top performance-critical loops from 8 MiBench benchmarks, previous
techniques failed to obtain mappings for almost all loops, when highly constrained by
the resources.

} RAMP accelerated the top performance-critical loops of 8 embedded applications from
MiBench by 23× as compared to sequential execution, and by 2.13× over REGIMap, and
by 3.39× over MEMMap.
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Scratch-Pad Memory

Execution Mechanism for Inference
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Executing Residual Block on CGRA

} Pre-load filter weights to RF
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Output Stationary Dataflow for Convolutions
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Streaming Feature Maps for MACs

} Input feature map streamed through PEs
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Output Stationary Dataflow for Convolutions
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Output Stationary Dataflow for Convolutions
} Input feature map streamed through PEs

} PEs perform MACs on input data and/or passes to neighboring PES 
} Partial sums stored in the RF

} Batch Normalization, Scaling and ReLU performed before storing 
output feature map
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Experimental Setup

} Neural networks evaluated: ResNet-18 and ResNet-34 models
} Computations on N-dimension feature maps defined in C/C++

} Dataset: ImageNet
} Input feature map: 224x224x3.

} Cycle-count performance comparison of the 2 approaches 
} Baseline: Intel Core i7-870 CPU (2.93GHz, Quad-Core)

} 256 kB L1$, 1 MB L2$, 8 MB L3$
} 8 GB system memory (4 GB DIMMs, DDR3 1.33GHz)
} Performance measured in terms of execution cycles on a core (linear scaling to 4 cores)
} Profiling: GNU Perf (stat collection from hardware counters)
} Compilation with g++ -O3 (aggressive loop optimizations, and auto-vectorization enabled)
} Algorithmic representation for 4D convolutions

¨ Conventional representation shown in Minimizing Computation in Convolutional Neural Networks by J. Cong et al., in ICANN 2014.

} Performance model for CGRA (efforts ongoing):
} In-house C++ simulator (integration with Gem5 ongoing)
} 4 clusters of PEs; each cluster is mounted with 68kB scratch-pad memory (total 196 PEs)
} Dataflow execution: Output stationary (streaming data/MAC/compare takes 1 cycle, pipelined)
} DMA model for scratch-pad memory management: latency (cycles)= 291 + 0.24*bytes
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Early Results
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N: Batch size
Baseline: Intel i7-870 Quad-core CPU
OS:     Output Stationary dataflow for Convolutions
OPT1: Batch normalization, ReLu, pooling on CGRA
OPT2: Software prefetching on SPM enabled

through quad-buffering.

Further Optimizations Possible:
• Interleave partial sum computations across filters instead of channels, i.e., operate on various filters for an 

input channel, to better reuse input feature maps. ~ 4X speedup over OS+OPT[1-2]
• Design dataflow execution to consider variation in data reuse opportunities (filter weights vs. ifmap for early 

residual blocks in model)
• Design-space exploration of the architecture for using all-PE communication through input/output FIFOs 

instead of streaming the data through a single PE.

Throughput
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Computing System Stack [Ongoing]
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Application
Algorithm

Programming Language
Libraries/Utilities

Compiler
Operating (Runtime) System
Instruction Set Architecture

Microarchitecture
Logic (Register-Transfer Level)

Circuits

Devices/Technology

Pragma based annotations

Support for accelerator execution

Front-end to work on Tensors
Schedule tensors on 
accelerator clusters

Standing On The Shoulder Of
open-source frameworks
developed by Giants

(Tensor-Graph)

VTA (UW)
VTA deep 
learning 
accelerator

LegUp (UToronto)MAERI (GaTech)

SiFive
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Summary and Next Steps

Highlights
} DATE 2018 and DAC 2018 papers on CGRA

} LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs [DATE 2018]
} RAMP: Resource-Aware Application Mapping on CGRAs [DAC 2018]

} Released the first version of the first open source compiler-simulator toolchain for CGRAs
} CCF: https://github.com/cmlasu/ccf

Next steps
} Complete simulation model and performance model.

} Embed energy model (e.g. through McPAT)
} Design space exploration to settle upon the spatially programmable solution and the 

corresponding dataflow execution.
} Set the interconnections, RF size, CGRA-SPM to DRAM bandwidth

} Development of a light-weight compiler from tensor flow to the CGRA accelerator.
} Integrate routines for accelerator execution and software prefetching to TensorFlow library routines.
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