
CML

Energy-Efficient Acceleration
of RNNs using CGRA

Aviral Shrivastava, Arizona State University

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

CGRA: Coarse-Grain Reconfigurable Arrays

} CGRAs can achieve power-efficiency of several 10s of GOps/Sec per Watt.

} ADRES CGRA chip, up to 60 GOps/sec per Watt [IMEC, HiPEAC 2008]

} HyCUBE chip, about 63 MIPS/mW [M. Karunaratne et al., DAC 2017]

} Popular in Embedded Systems and Multimedia [Samsung SRP processor]

10/10/18
ARM Summit 2018

} An array of Processing Elements (PEs);
each PE has ALU-like functional unit that
works on an operation at every cycle.

} Array configurations vary in terms of –
} Array Size ► Reg. File Architectures
} Functional Units ► Interconnect Network

CMLWeb page: aviral.lab.asu.edu CML

• Iterative Modulo Scheduling –
Every operation is executed at II
cycles.

• Initiation Interval aka II is
performance metric.

• Software Pipelining –
Operations from different
iterations can be executed
simultaneously. This empowers
to accelerate even non-parallel
loops through the CGRAs.

Mapping Applications on CGRAs

10/10/18
ARM Summit 2018

II = 2

a

b c

1

d

1 2

a
i=1

b c

a d
i=2

time

1

2

3

for(i=1; i<1000; i++){
A[i] = B[i-1] - 4;
B[i] = A[i] + L;
C = A[i] * 3
D[i] = C + 7;

}

a:
b:
c:
d:

Sample Loop

Data Dependency Graph

Modulo
Schedule

1

2

1

1x2 CGRA

Compiler Maps DDG
onto CGRA

Performance (loop execution time)
critically depends on the

mapping obtained by compilerTime-Extended CGRA

CMLWeb page: aviral.lab.asu.edu CML

CGRAs Becoming a Hotbed of Research

Recently, several techniques and evaluations for CGRAs or CGRA-like spatial architectures have been
presented including
} Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures. Michael Pellauer,

Angshuman Parashar, Michael Adler, Bushra Ahsan and others. In ACM TC 2015.

} DRAMA: An Architecture for Accelerated Processing Near Memory. Amin Farmahini-Farahani, Jung Ho Ahn,
Katherine Morrow and Nam Sung Kim. In IEEE CAL 2015. [UWisc]

} Control Flow Coalescing on a Hybrid Dataflow/von Neumann GPGPU. Dani Voitsechov Yoav Etsion. In MICRO 2015.
[Technion, Israel]

} Evaluating Programmable Architectures for Imaging and Vision Applications. Artem Vasilyev, Nikhil Bhagdikar,
Ardavan Pedram, Stephen Richardson, Shahar Kvatinsky, Mark Horowitz. In MICRO 2016.

} Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. Yu-Hsin Chen,
Joel Emer and Vivienne Sze. In ISCA 2016.

} A space-and energy-efficient code compression/decompression technique for coarse-grained reconfigurable
architectures. Bernhard Egger et al. In CGO 2017. [SNU and Samsung]

} Hycube: A cgra with reconfigurable single-cycle multi-hop interconnect. Manupa Karunaratne, Aditi Kulkarni
Mohite, Tulika Mitra and Li-Shiuan Peh. In DAC 2017. [NUS]

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

Key Features of CGRA Accelerators

} With software-pipelined execution, CGRA PEs can
efficiently accelerate loops with lower parallelism
} E.g. loops with loop-carried dependence, inter-twined

loops, loops with high branch divergence etc.

} Avoids one of the fundamental bottlenecks of Von-
Neumann architecture i.e., CGRAs are not subjected
to dynamic fetching and decoding of instructions.
} CGRA instructions are pre-decoded in memory, and PEs

transfer data directly among each other, without
necessarily going through centralized register
file/memory.

} Efficient mapping of loop operations is done by
compiler, no programmer intervention is needed.
} Performance-critical kernels of several irregular

applications can benefit from acceleration.
10/10/18

ARM Summit 2018

Fig 21 from recent Intel patent on Configurable
Spatial Architecture (CSA)

Article:
https://www.nextplatform.com/2018/08/30/intels
-exascale-dataflow-engine-drops-x86-and-von-
neuman/

CMLWeb page: aviral.lab.asu.edu CML

CCF: CGRA Compiler+simulation Framework

10/10/18
ARM Summit 2018

Mark the loops

Use CGRACC as

the compiler

Extract
 the loop

Generate the DFG

Map and schedule on

CGRA

Instruction selection

Run on gem5• llvm 5.0 and gem5 as foundation
• Public Release: https://github.com/cmlasu/ccf
• Video: https://www.youtube.com/watch?v=iGV1lHsjy4w

https://github.com/cmlasu/ccf
https://www.youtube.com/watch?v=iGV1lHsjy4w

CMLWeb page: aviral.lab.asu.edu CML

Our Recent Work on Compiling for CGRAs

} Efficient software pipeline

} EPIMap: Using Epimorphism to Map Applications on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and
Sarma Vrudhula. In DAC 2012.

} Efficiently using distributed register files
} REGIMap: Register-aware Application Mapping on CGRAs. Mahdi Hamzeh, Aviral Shrivastava and Sarma

Vrudhula. In DAC 2013.

} Register file organization
} URECA: A Compiler Technique to Manage Unified Register File for CGRAs. Shail Dave, Mahesh Balasubramanian

and Aviral Shrivastava. In DATE 2018.

} Efficient mapping of if-then-else’s

} LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs. Mahesh
Balasubramanian, Shail Dave, Aviral Shrivastava and Reiley Jeyapaul. In DATE 2018.

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

RAMP [DAC 2018]: Selecting a Routing Alternative

} Failure Analysis
} Dependent operations are scheduled at

distant time; managing the data with large
lifetime in registers is not possible
} Route by PEs, Spill to memory/distributed

RFs
} Source operand is a live-in value, and cannot

be managed in the registers
} Load the live-in value from the memory

} Dependent operations are scheduled at the
consecutive cycles; routing is not possible
due to limited interconnect/unavailability of
free PEs
} Re-compute, Route by a PE, Re-schedule

10/10/18
ARM Summit 2018

• Various routing strategies

CMLWeb page: aviral.lab.asu.edu CML

RAMP vs. RegiMap and MemMap

} For the top performance-critical loops from 8 MiBench benchmarks, previous
techniques failed to obtain mappings for almost all loops, when highly constrained by
the resources.

} RAMP accelerated the top performance-critical loops of 8 embedded applications from
MiBench by 23× as compared to sequential execution, and by 2.13× over REGIMap, and
by 3.39× over MEMMap.

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

Data Reuse
Weights Ifmap

3x3 conv
64 filters, s=1

Batch Normalization

Scale

ReLU

56x56x64

56x56x64
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

Data Reuse
Weights Ifmap

196k (2)36k (N)

36k (N)

24.5k (2)2304k (N)

2304k (N)

*N: Batch size

Residual Blocks from ResNet-18

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

Scratch-Pad Memory

Execution Mechanism for Inference

10/10/18
ARM Summit 2018

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale
Filter
Weights Input Feature Map

(padded, quad-buffered)
Output Feature Map

(quad-buffered)

~2k ~41k ~25k
Dark shaded areas
indicate buffered data
(in use by PEs)
Light shade indicates
prefetching/write-back

RF Size: 0.64 kB
Þ Simultaneously operate on

32 (input) channels of
1 (output) filter

3x3 conv
512 filters, s=1

7x7x512

7x7x512
Input Feature Map

Controller
Scratch-Pad Memory

7x7x512

9x9

9x9x512

3x3x512

* =

(padded)

512
filters

.

.

512

512 3x3

CMLWeb page: aviral.lab.asu.edu CML

Executing Residual Block on CGRA

} Pre-load filter weights to RF

10/10/18
ARM Summit 2018

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

I(3,3)

(1,3)
(1,1)(1,2)

(2,1)

(3,1)

(3,2)

(1,1)(1,2)(1,3)
(2,2)

(1,1)(1,2)(1,3)(2,1)

(2,1)(2,2)

(2,3)

(3,2)

(1,1)(1,2)(1,3)

(2,1)(2,2) (1,2)(1,3) (1,1)(2,3)

(2,1)(2,2) (1,2)(1,3)(2,3)(3,1)

(2,1)(2,2)(2,3)(3,1) (1,3)

CMLWeb page: aviral.lab.asu.edu CML

Output Stationary Dataflow for Convolutions

10/10/18
ARM Summit 2018

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

weight (3,3) (3,2) (3,1) (2,3) (2,2) (2,1) (1,3) (1,2) (1,1)

PE

(7,7)

(1,1) ch1
(1,2) ch1
(1,3) ch1

(3,1) ch1
(3,2) ch1
(3,3) ch1

0
1
2

6
7
8

(3,2) ch32
(3,3) ch32

286
287

(3,1) ch32 285

.

.
.
.

..
.
.

psum ofmap1 288

512-entry RF

7x79x9

3x3

* =

(padded)

512

512

channels

512
filters

.

.

512

(partial)

(7,7)

partial
sum

CMLWeb page: aviral.lab.asu.edu CML

Streaming Feature Maps for MACs

} Input feature map streamed through PEs

10/10/18
ARM Summit 2018

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

I(6,4)

(7,7)(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)

(6,9)

(6,6)

(6,5)

(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)

(6,8) (7,5)(7,4)(7,3)(7,2)(7,1)(6,9)

(6,7) (6,9)(6,8)

CMLWeb page: aviral.lab.asu.edu CML

Output Stationary Dataflow for Convolutions

10/10/18
ARM Summit 2018

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Ifmap

weight

(9,9) (9,8) (9,7) (8,9) (8,8) (8,7) (7,9) (7,8) (7,7)

(3,3) (3,2) (3,1) (2,3) (2,2) (2,1) (1,3) (1,2) (1,1)

x x x x x x x x x+ + + + + + + + = (7,7)

partial
sum

PE

(7,7)

(1,1) ch481
(1,2) ch481
(1,3) ch481

(1,1) ch512
(1,2) ch512
(1,3) ch512

0
1
2

279
280
281

(3,2) ch512
(3,3) ch512

286
287

(3,1) ch512 285

.

.
.
.

..
.
.

288

512-entry RF

(channel 512)

7x79x9

* =

(padded)

512

512

channels

512
filters

.

.

512

psum ofmap1

3x3

CMLWeb page: aviral.lab.asu.edu CML

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

3x3 conv
512 filters, s=1

Batch Normalization

Scale

ReLU

7x7x512

7x7x512
Input Feature Map

3x3 conv
512 filters, s=1

Batch Normalization

Scale

Output Stationary Dataflow for Convolutions
} Input feature map streamed through PEs

} PEs perform MACs on input data and/or passes to neighboring PES
} Partial sums stored in the RF

} Batch Normalization, Scaling and ReLU performed before storing
output feature map

10/10/18
ARM Summit 2018

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

CMLWeb page: aviral.lab.asu.edu CML

Experimental Setup

} Neural networks evaluated: ResNet-18 and ResNet-34 models
} Computations on N-dimension feature maps defined in C/C++

} Dataset: ImageNet
} Input feature map: 224x224x3.

} Cycle-count performance comparison of the 2 approaches
} Baseline: Intel Core i7-870 CPU (2.93GHz, Quad-Core)

} 256 kB L1$, 1 MB L2$, 8 MB L3$
} 8 GB system memory (4 GB DIMMs, DDR3 1.33GHz)
} Performance measured in terms of execution cycles on a core (linear scaling to 4 cores)
} Profiling: GNU Perf (stat collection from hardware counters)
} Compilation with g++ -O3 (aggressive loop optimizations, and auto-vectorization enabled)
} Algorithmic representation for 4D convolutions

¨ Conventional representation shown in Minimizing Computation in Convolutional Neural Networks by J. Cong et al., in ICANN 2014.

} Performance model for CGRA (efforts ongoing):
} In-house C++ simulator (integration with Gem5 ongoing)
} 4 clusters of PEs; each cluster is mounted with 68kB scratch-pad memory (total 196 PEs)
} Dataflow execution: Output stationary (streaming data/MAC/compare takes 1 cycle, pipelined)
} DMA model for scratch-pad memory management: latency (cycles)= 291 + 0.24*bytes

10/10/18
ARM Summit 2018

CMLWeb page: aviral.lab.asu.edu CML

Early Results

10/10/18
ARM Summit 2018

N: Batch size
Baseline: Intel i7-870 Quad-core CPU
OS: Output Stationary dataflow for Convolutions
OPT1: Batch normalization, ReLu, pooling on CGRA
OPT2: Software prefetching on SPM enabled

through quad-buffering.

Further Optimizations Possible:
• Interleave partial sum computations across filters instead of channels, i.e., operate on various filters for an

input channel, to better reuse input feature maps. ~ 4X speedup over OS+OPT[1-2]
• Design dataflow execution to consider variation in data reuse opportunities (filter weights vs. ifmap for early

residual blocks in model)
• Design-space exploration of the architecture for using all-PE communication through input/output FIFOs

instead of streaming the data through a single PE.

Throughput
Improvement

0

2

4

6

8

N=1 N=4 N=16 N=64 N=128 N=1 N=4 N=16 N=64 N=128

ResNet-18 ResNet-34

OS OS+OPT1 OS+OPT[1-2]

CMLWeb page: aviral.lab.asu.edu CML

Computing System Stack [Ongoing]

10/10/18
ARM Summit 2018

Application
Algorithm

Programming Language
Libraries/Utilities

Compiler
Operating (Runtime) System
Instruction Set Architecture

Microarchitecture
Logic (Register-Transfer Level)

Circuits

Devices/Technology

Pragma based annotations

Support for accelerator execution

Front-end to work on Tensors
Schedule tensors on
accelerator clusters

Standing On The Shoulder Of
open-source frameworks
developed by Giants

(Tensor-Graph)

VTA (UW)
VTA deep
learning
accelerator

LegUp (UToronto)MAERI (GaTech)

SiFive

CMLWeb page: aviral.lab.asu.edu CML

Summary and Next Steps

Highlights
} DATE 2018 and DAC 2018 papers on CGRA

} LASER: A Hardware/Software Approach to Accelerate Complicated Loops on CGRAs [DATE 2018]
} RAMP: Resource-Aware Application Mapping on CGRAs [DAC 2018]

} Released the first version of the first open source compiler-simulator toolchain for CGRAs
} CCF: https://github.com/cmlasu/ccf

Next steps
} Complete simulation model and performance model.

} Embed energy model (e.g. through McPAT)
} Design space exploration to settle upon the spatially programmable solution and the

corresponding dataflow execution.
} Set the interconnections, RF size, CGRA-SPM to DRAM bandwidth

} Development of a light-weight compiler from tensor flow to the CGRA accelerator.
} Integrate routines for accelerator execution and software prefetching to TensorFlow library routines.

10/10/18
ARM Summit 2018

https://github.com/cmlasu/ccf

