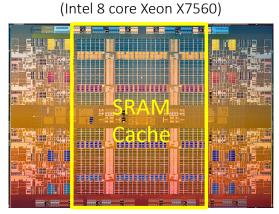
Logic-compatible Gain Cell eDRAM

Andrea Bonetti⁺, Robert Giterman², Adam

Teman², Alex Fish²,

Pascal Meinerzhagen¹, Andreas Burg¹


¹Telecommunications Circuits Laboratory, EPFL

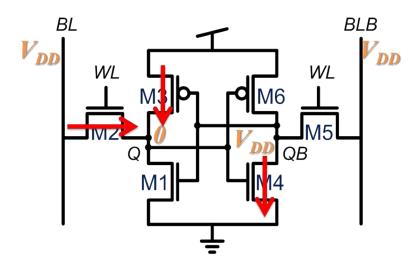
²Bar-Ilan University

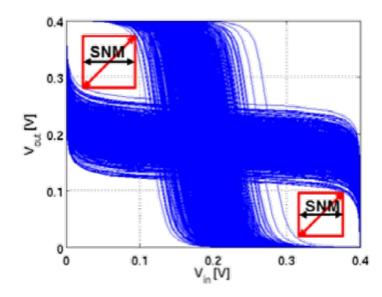
Memories Are the Limiting Factor for Cost and Energy Efficiency

- On-chip memories have a poor area density and often dominate chip area and cost in many computing systems
- Memory often accounts for >50% of the active power and for 100% of the power during sleep/standby periods in low-power systems
 High-Performance Computing in PCs
 ULP energy-autonomous and

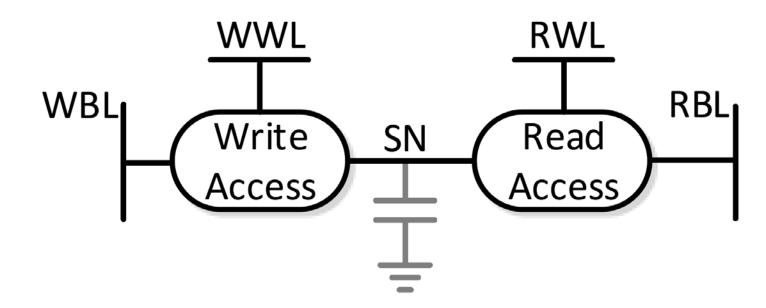
and Data Centers

Thousands of cores in a data center consume mega Watts of power

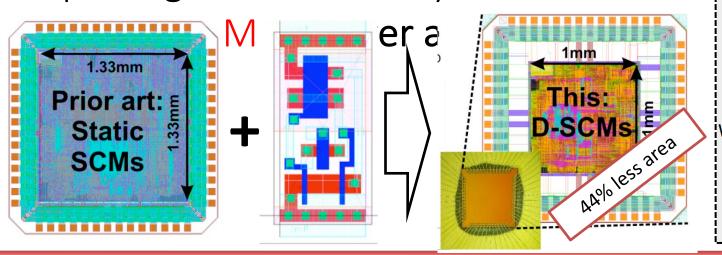

ULP energy-autonomous and wearable devices

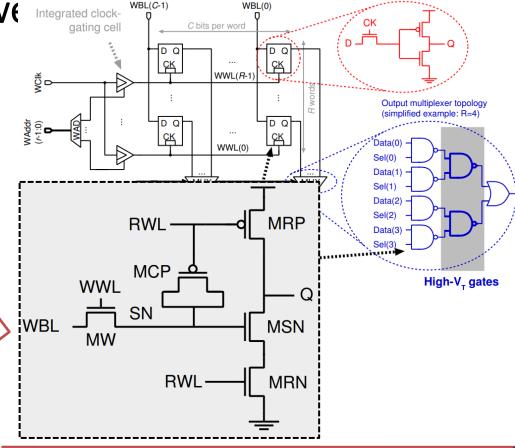


Operation for up to 10+ years on single battery charge


On-Chip SRAM Limitations

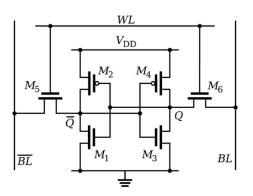
- Almost all integrated circuits rely on the standard 6T-SRAM bitcell for on-chip memory
- However, it incurs several limitations:
 - Six transistors per bit (6T)
 - Considerable static power due to leakage
 - Ratioed operation limits voltage scaling
 - Two port operation requires 8T

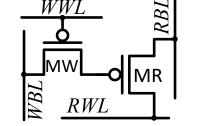

Basic Concept of Gain Cell eDRAM (GC-eDRAM)

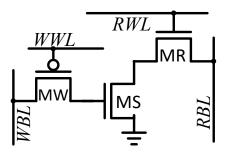


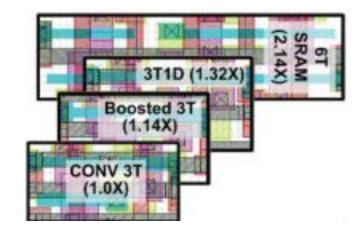
Data is stored as charge with read- and write-access networks with 1-2 transistors each

Refresh-free GC-eDRAM for DSP Applications

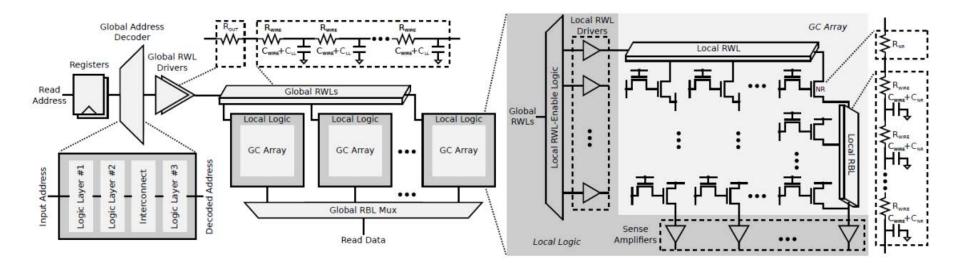

- DSP applications require many small memories for short-term storage
- Standard-cell memories offer ~40% powe macros and enable voltage-scaling
 However, with considerable area overhead
- Replacing latches with dynamic



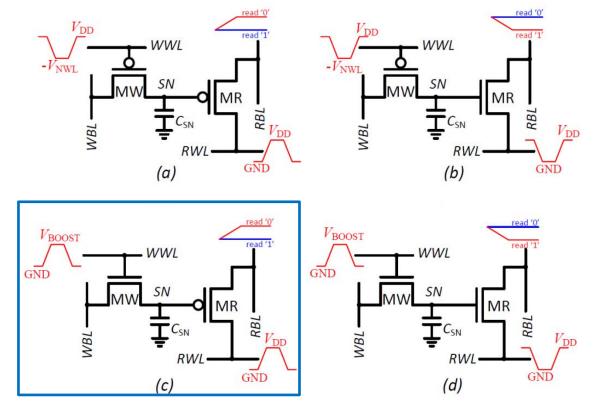

Gain Cell Embedded DRAM (eDRAM)


- Most compact realization: 2-3 transistors (2T and 3T gain cell)
 - Bit-cell area offers almost a 2x advantage over SRAM

6T-SRAM macros with an area of **130F² per bit**



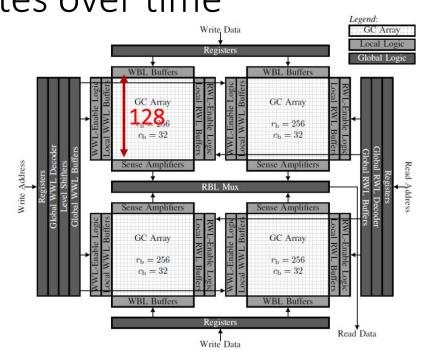
2T and 3T Gain Cell with ~70F² per bit


Gain Cell Embedded DRAM (eDRAM)

- Gain cells can be arranged in compact arrays with simple read- and write-access circuitry
 - Hierarchical arrangement of sub-arrays for large memories
 - Simple area-efficient peripherals
- Gain cell arrays are not more complex than SRAM arrays

2T Gain Cell eDRAM: Basic Operating Principle

- Write port (WWL & WBL), storage cap, and read port (RWL & RBL)
 - Different combinations of PMOS and NMOS transistors
 - Use of different threshold options
- Write operation:
 - Boosted WWL, above VDD for NMOS, below V_{SS} for PMOS
- Read:
 - PMOS MR: Pre-discharge RBL, raise RWL
 - NMOS MR: Precharge RBL Lower RWL



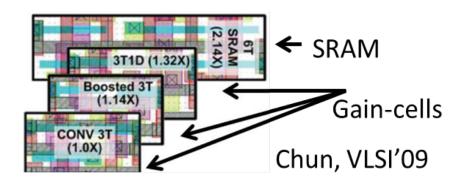
Gain Cell eDRAM Requires Periodic Refresh

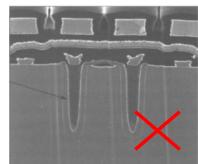
- Dynamic storage mechanism: data deteriorates over time
- Need for periodic refresh cycles (read/write)
 - Data arranged in sub-arrays
 - Parallel refresh in all sub-arrays
- Array availability

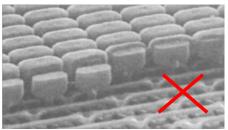
Availability [%] =
$$1 - \frac{T_{\text{clk}}}{T_{\text{ret}}}N_{\text{r}}$$


- Typical retention times: $T_{ret} = 100us 1ms$
- Typical access/refresh cycle-time: $T_{clk} = 10$ ns
- Typical sub-array size $N_r = 128-256$ rows

Typical array availability: ~98%

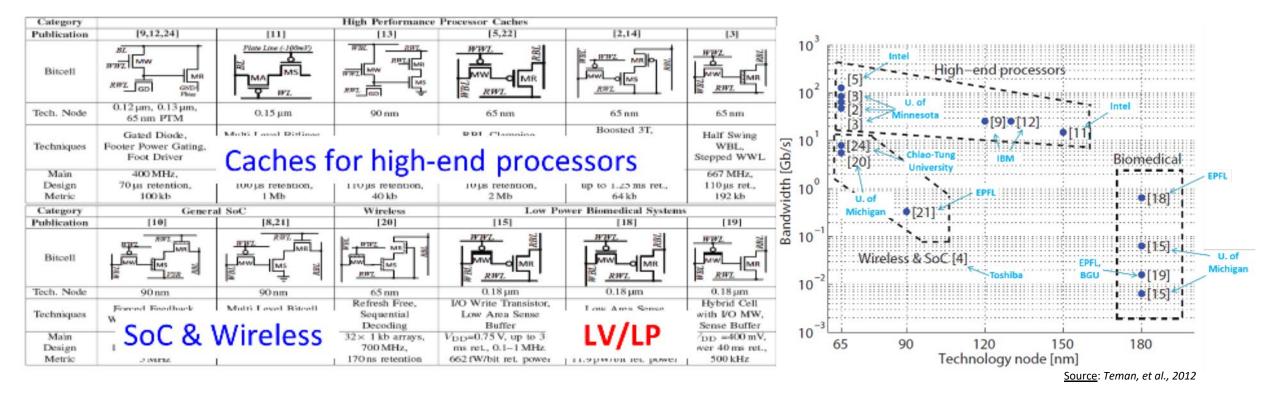

Gain Cell eDRAM Requires Periodic Refresh


- Typical application of eDRAM: IoT SoCs:
 - Multi-level memory hierarchy with a high-capacity L2 memory
 - Connected to processor through a shared bus (stalls are not unusual)
 - Processor supported by at least one level of cache
 - L2 memory supported by a dedicated memory controller
- L2 memory access in short bursts with long idle periods (>> 75%) that allow to hide refresh with almost no overhead

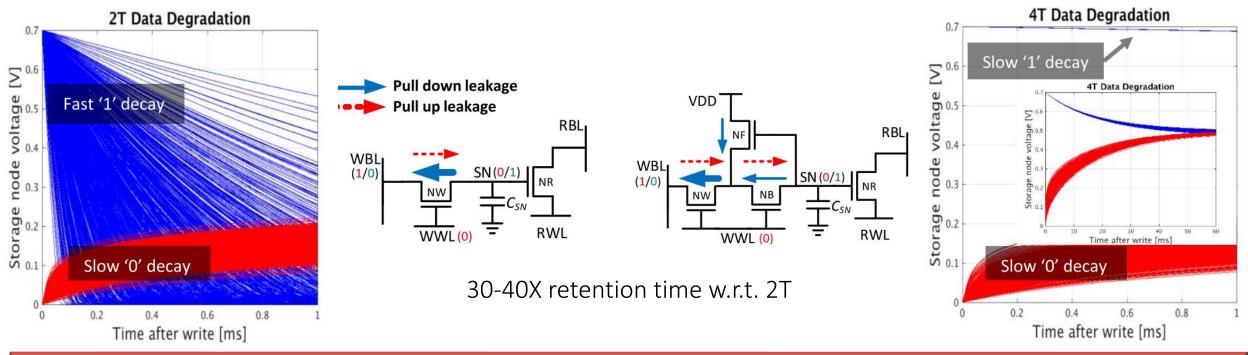


Gain-Cell Embedded DRAM Advantages

- Gain Cells have several advantages over conventional 6T SRAM and over 1T-1C eDRAM
 - Smaller cell size than SRAM, less bitcell leakage
 - Compared to 1T-1C eDRAM:
 - Logic-compatible, i.e., no special processing steps, and no extra cost
 - Non-destructive read operation
 - Naturally suport two-port operation
 - Can be optimized for read-ability AND write-ability
 - Operational under near/sub-threshold voltages
 - Often lower retention power (leakage+refresh) than SRAM static power
 - In many systems refresh can be hidden with almost no overhead



Trench cap Stacked caps Kang, McGraw-Hill


GC eDRAM is an Attractive Alternative for Many Applications

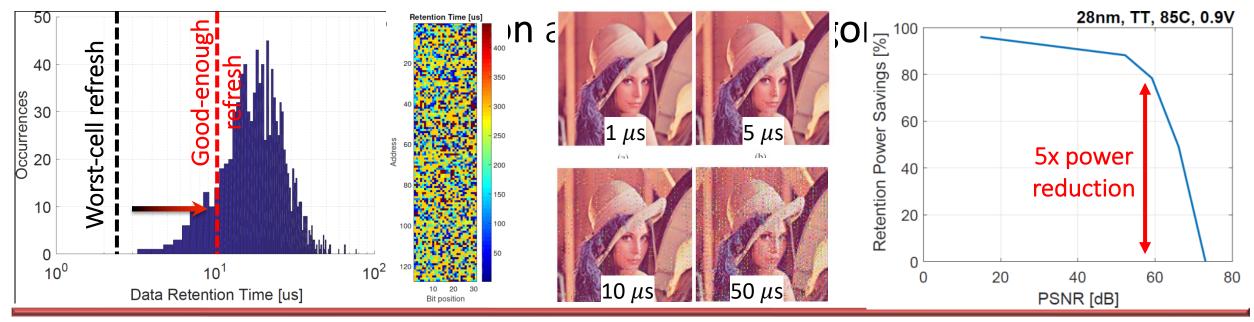
- GC-eDRAM is a class of memory with many different flavors
- Different bit-cells offer a wide range of design trade-offs between area, retention time, access delay, and power consumption

GC-eDRAM is also feasible for nm-CMOS Nodes

- Advanced process nodes suffer from high leakage currents
- eDRAM has been considered infeasible below 65nm
- 4T bit-cell topology provides feedback for weak data level and enables eDRAM with milliseconds retention time in 28nm CMOS

High Density Low Power GC-eDRAM in 28nm FD-SOI

• Clear area reduction compared to SRAM with sufficient retention


	6T SRAM	2T Gain-Cell	3T Gain-Cell	Our 4T Gain-Cell	4T GC-eDRAN Array
Cell Structure					BIST Serial Interface Control Other Test
Technology Node	28nm FD-SOI	28nm FD-SOI	28nm FD-SOI	28nm FD-SOI	Structures
Cell Size (μm^2) (Non-pushed logic design rules)	0.325µm² [1X]	0.152 μm^2 [0.47X]	0.186 μm^2 [0.57X]	0.23 μm^2 [0.71X]	222222222222
8Kbit Macro Size (μm^2)	$3321 \mu m^2$ [1X] Pushed SRAM design rules	N/A	N/A	2769 μm^2 [0.83X] Non-pushed logic design rules	
Supply Voltage	700mV	700mV	700mV	700mV	
Data Retention Time	Static	32μs @ 27C * 3.1μs @ 85C *	51μs @ 27C * 4.14μ @ 85C *	1691.4 <i>μs</i> @ 27C ** 154.95 <i>μs</i> @ 85C **	
Array Retention Power*	74.3nW/8Kb @ 27C 1.36μW/8Kb @ 85C	2.1μW/8Kb@ 27C 22μW/8Kb @ 85C	1.4μW/8Kb@ 27C 16.8μW/8Kb @ 85C	57.37nW/8Kb@ 27C 909.34nW/8Kb@ 85C	

*Simulated **Measured

Source: R. Giterman, A. Fish, A. Burg and A. Teman, IEEE Transactions on Circuits and Systems I (TCAS-I), August 2017

Approximate Computing with Unreliable (eDRAM) Memory

- Manufacturing inaccuracies and different operating conditions lead to variations in the circuit behavior within each chip and between chips
 - Conventional solution: refresh with guardbands for 100% reliable operation
- Computing with unreliable memories: relax refresh and accept errors

Dr. Andreas Burg

EPFL-STI-IEL-TCL

Conclusions

- Memory is the limiting factor in area and power for almost all integrated circuits
- 6T SRAM is well established, but consumes large are and power and limits voltage scaling
- GC-eDRAM is a real alternative for SRAM
 - Area and energy efficient
 - Refresh can be hidden in many applications
 - Is feasible in advanced technology nodes (28nm and below)
 - GC eDRAM provides further potential when combined with new fault tolerant computing paradigms such as approximate computing or Al

Pascal Meinerzhagen · Adam Teman Robert Giterman · Noa Edri Andreas Burg · Alexander Fish

Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-on-Chip

D Springer