
Flower

On-Device Intelligence
Workshop, MLSys 2021

On-Device Federated Learning

Akhil Mathur, Daniel J. Beutel,
Pedro Porto Buarque de Gusmão, Javier

Fernandez-Marques, Taner Topal,
Xinchi Qiu, Titouan Parcollet, Yan Gao,

Nicholas D. Lane

Motivation

ML Today

Move data
to model

15
connected devices
per person by 2030

(vs ~7 today)

Battery
Network
Privacy/regulations

Federated Learning

Move model
to data

2.6b
new AI-enabled

edge devices, yearly

Availability
Bandwidth
Regulations

Centralized
Learning

Network: LAN, WAN, WiFi, LoRaWan, 2/3/4/5/6G, BT, BTLE, ...

Platform: Linux, macOS, Windows, iOS, Android, embedded

Hardware: CPU, GPU, TPU, edge-TPU, Neural Engine, ...

Framework: TensorFlow, PyTorch, JAX, MXNet, libtorch, TF Lite, ...

Protocol: gRPC, REST, MQTT, sockets, WebSockets, ...

Locality: single-region, multi-region, global

Data: IID, non-IID

Federated Learning:
Heterogeneity

Network: LAN, WAN, WiFi, LoRaWan, 2/3/4/5/6G, BT, BTLE, ...

Platform: Linux, macOS, Windows, iOS, Android, embedded

Hardware: CPU, GPU, TPU, edge-TPU, Neural Engine, ...

Framework: TensorFlow, PyTorch, JAX, MXNet, libtorch, TF Lite, ...

Protocol: gRPC, REST, MQTT, sockets, WebSockets, ...

Locality: single-region, multi-region, global

Data: IID, non-IID

Flower

Flower
A Friendly
Federation
Framework

The Flower open source
framework solves this
complexity with modular
components to accelerate
the research of federated
approaches

Flower
Modular Architecture

Flower
Modular Architecture

Your existing
ML project

Flower
Android

On-device training support on mobile devices is in
infancy.

We leverage the Tensorflow Lite model
personalization support on Android for Federated
Learning.

Implementing three core functions to interface with
Flower.

Flower
Android

Flower Server deployed on EC2.

Flower Android Clients

● Personal Android smartphones
● Android phones and tablets in the AWS Device Farm.

Flower
Embedded

Flower clients implemented in Python for Raspberry
Pi and Nvidia Jetson TX2.

Heterogeneous hardware, but same Flower client
implementation.

Python and Android clients can co-exist

Evaluation

Runtime Costs of
Federated Training

Local
Epochs

(E)

Accuracy Convergence
Time (mins)

Energy
Consumption

(kJ)

1 0.48 17.63 10.21

5 0.64 36.83 50.54

10 0.67 80.32 100.95

Performance on Nvidia Jetson TX2. 10 clients, 40 rounds

Dataset: CIFAR 10
Model: ResNet 18

No. of
Clients

(C)

Accuracy Convergence
Time (mins)

Energy
Consumption

(kJ)

4 0.84 30.7 10.4

7 0.85 31.3 19.72

10 0.87 31.8 28.0

Performance on Android smartphones. 5 epochs, 20 rounds.

Dataset: Office-31
Base Model: MobileNetV2
Head Model: 2 layer DNN

Computational
Heterogeneity

Performance on Nvidia Jetson TX2. 10 clients, 40 rounds

Dataset: CIFAR 10
Model: ResNet 18

FL Convergence time on CPU  1.27x GPU

We can implement a device-aware FL
strategy

Assign a cutoff time (𝜏) for each
processor after which the device must
send partial results.

Speed up convergence at the expense of
some accuracy loss.

Flower

Akhil Mathur
Nokia Bell Labs and University of Cambridge

https://akhilmathurs.github.io/
@akhilmathurs

https://flower.dev/

https://akhilmathurs.github.io/

