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Motivation
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Federated Learning

@ Availability +2,6b
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Centralized

Learning

Network: LAN

Platform: Linux

Hardware: CPU, GPU, TPU,

Framework: TensorFlow, PyTorch, JAX, MXNet,
Protocol: dgRPC

Locality: single-region

Data:

[»)



Federated Learning:

Heterogeneity

Network: LAN, WAN, WiFi, LoRaWan, 2/3/4/5/6G, BT, BT-LE, ...
Platform: Linux, macOS, Windows, iOS, Android, embedded
Hardware: CPU, GPU, TPU, edge-TPU, Neural Engine, ...
Framework: TensorFlow, PyTorch, JAX, MXNet, libtorch, TF Lite, ...
Protocol: dgRPC, REST, MQTT, sockets, WebSockets, ...
Locality: single-region, multi-region, global

Data:

lID, non-IID
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The Flower open source Federation

framework solves this
complexity with modular
components to accelerate
the research of federated
approaches

Flower Client
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Flower

Modular Architecture
’ User ‘ Framework
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Flower

Modular Architecture -
Your existing
’ User ‘ Framework ML project
Code Code promomsseoooseseeoosssoooooeeooooees
RPC Flower Training e
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Flower
Android

Base Model
J (pretrained)

Head Model §
On-device training support on mobile devices is in /

infancy. TFLite Transfer
Converter

Flower

Server

H A
. RPC
We leverage the Tensorflow Lite model : TR vt g ........................
ersonalization support on Android for Federated :Android A
FL)earnin PP On-Device
9 Model
mmmm Data
Implementing three core functions to interface with Local Training
Flower. 5 M
TFLite Model fit (), Flower [
Personalization gt Cient |
ersona get_weights (..)




Flower
Android

Office-31
CIFAR-10

Select Task:

Allowed Times:  00:00 - 08:00

Flower Server deployed on EC2. Wi Battary, 70%

PARTICIPATE ABORT

Flower Android Clients

e Personal Android smartphones
e Android phones and tablets in the AWS Device Farm.

| Device Name | Type | OS Version |
Google Pixel 4 Phone 10
Google Pixel 3 Phone 10
Google Pixel 2 Phone 9
Samsung Galaxy Tab S6 | Tablet 9
Samsung Galaxy Tab S4 | Tablet 8.1.0




Flower
Embedded

RaspberryPi device
<<docker host>>

<<image>>
Flower clients implemented in Python for Raspberry |

Pi and Nvidia Jetson TX2. | I
/data TCP/P

J

Heterogeneous hardware, but same Flower client -
. . erver
|mp|ementat|on NVIDIA-Jetson device

<<docker host>>

<<image>>
Python and Android clients can co-exist L Flower Client ]

[—
/data | TCPAP | GPU
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Evaluation



Runtime Costs of
Federated Training

Local Accuracy Convergence Energy
Epochs Time (mins) Consumption
(E) (kJ)
1 0.48 17.63 10.21
5 0.64 36.83 50.54
10 0.67 80.32 100.95

Performance on Nvidia Jetson TX2. 10 clients, 40 rounds

Dataset: CIFAR 10
Model: ResNet 18

No. of Accuracy Convergence Energy
Clients Time (mins) Consumption
(C) (kJ)
4 0.84 30.7 10.4
7 0.85 31.3 19.72
10 0.87 31.8 28.0

Performance on Android smartphones. 5 epochs, 20 rounds.

Dataset: Office-31
Base Model: MobileNetV2
Head Model: 2 layer DNN



Computational
Heterogeneity

FL Convergence time on CPU = 1.27x GPU

We can implement a device-aware FL
strategy

Assign a cutoff time (T) for each
processor after which the device must
send partial results.

Speed up convergence at the expense of
some accuracy loss.

GPU CPU CPU CPU

(7=0 (=0 (7=223) (=199
Accuracy 0.67 0.67 0.66 0.63
Training 20,32 102 89.15 80.34

time (mins) (1.27x) (1.11x) (1.0x)

Performance on Nvidia Jetson TX2. 10 clients, 40 rounds

Dataset: CIFAR 10
Model: ResNet 18



Flower

https://flower.dev/
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