QAPPA: Quantization-Aware Power, Performance, and Area Modeling of DNN Accelerators

Ahmet Inci¹, Siri Garudanagiri Virupaksha¹, Aman Jain¹, Venkata Vivek Thallam¹, Ruizhou Ding¹, Diana Marculescu^{1,2}

On-device intelligence pushes hardware to its limits

Increasing model size and computational cost of ML models

- Hardware constraints are a key limiting factor for ML on edge devices
 - ◆ Stringent performance per area and energy-efficiency constraints
 - ◆ Chip area is one of the most expensive real estates
 - ♦ On-device inference time (latency) constraints

Enabling deployment of DNNs onto edge devices

DNN accelerators

[Source: Eyeriss]

[Source: EIE]

[Source: Google TPU]

Model compression

There is a need for a design space exploration framework that incorporates quantization-aware hardware and rapidly iterate over various designs

Our work: QAPPA

- We present QAPPA, a quantization-aware power, performance, and area (PPA)
 modeling framework for DNN accelerators
 - Highly parameterized framework implemented in RTL for spatial array accelerators
 - No need to have HW expertise to perform design space exploration
 - More optimized and more control in the design as opposed to HLS flow
 - ◆ Foster future research on HW/ML model co-design with lightweight processing element (PE)

Overview of *QAPPA* framework

 We present QAPPA, a highly parameterized quantization-aware PPA modeling framework for DNN accelerators

Methodology

Lightweight Processing Elements (LightPE)

•
$$w \cdot x = sign(w)(2^{n_1} + 2^{n_2} + \dots + 2^{n_K}) \cdot x = sign(w)(x \ll n_1 + \dots + x \ll n_K)$$

- ♦ LightPE-1
 - 4W8A
 - 1 shift and add
- ♦ LightPE-2
 - 8W8A
 - 2 shifts and add

f(.) w_1 w_2 x_1 x_2

 $o = f(w_1x_1 + w_2x_2)$

Conventional MAC

 $o = f((x_1 \ll n_{11}) + (x_1 \ll n_{12}) + (x_2 \ll n_{21}) + (x_2 \ll n_{22}))$ f(.) + $shift \quad shift \quad shift$

LightPE Shift & Add

[Ding et al., GVLSI'17]

PPA Modeling

- Synopsys Design Compiler & FreePDK45
- Synopsys VCS Simulator
- Synthesizing and determining PPA is expensive
 - Polynomial regression models using k-fold cross validation

PPA modeling results for different PE types

QAPPA's PPA models achieve high correlation to the actual PPA values

◆ FP32 implementation has the highest area and power cost whereas LightPEs have the lowest area and power results which shows the hardware-efficiency of LightPEs

Design space exploration on various DNN models

Design space exploration on various DNN models

LightPEs consistently outperform conventional INT16/FP32-based designs

- ◆ LightPE-1 and LightPE-2 achieve 4.9x and 4.1x more performance/area and 4.9x and 4.2x energy improvement on average when compared to the best INT16 configuration
- ♦ INT16 achieves 1.7x more performance/area and 1.4x energy improvement on average when compared to the best FP32 configuration

Conclusion

- We present QAPPA, a quantization-aware highly parameterized power, performance, and area modeling framework for DNN accelerators
- We show that different bit precisions and PE types lead to significant differences in terms of performance/area and energy
 - ◆ LightPE-1 and LightPE-2 achieve 4.9x and 4.1x more performance/area and 4.9x and 4.2x energy improvement on average when compared to the best INT16 configuration
- Our novel framework can foster the future research on design space exploration of DNN accelerators for various design choices including quantization-aware PE types, bit precision, and various microarchitectural design choices
- Future work: Include accuracy as an additional exploration metric or optimization objective