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Deep Compression
Make AI run Fast and Efficiently
with Limited Hardware Resource

Han, Mao, Dally, Deep Compression, ICLR’16, best paper award



Deep Compression
Make AI run Fast and Efficiently
with Limited Hardware Resource

Original ResNet-50

with Deep Compression

100MB

6MB 17x compression

Han, Mao, Dally, Deep Compression, ICLR’16, best paper award
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Pruning & Sparsity

curve credits to NVIDIA

Han et al., NIPS’15

Increased attention  
since 2015



AMC: AutoML for Model Compression
[ECCV 2018]

Proxyless Neural Architecture Search

HAQ: Hardware-aware  
Automated Quantization

[CVPR 2019], oral

[ICLR 2019]

AutoML and Neural Architecture Search

1st Place of Visual Wakeup Words (VWW) Challenge 2019  
Peak Memory Usage < 250KB, ours: 245KB 
Model Size < 250KB, ours: 242KB 
MAC < 60M, ours: 50M, Accuracy: 94.6%

auto design small models

https://arxiv.org/pdf/1802.03494.pdf
https://arxiv.org/pdf/1811.08886
https://arxiv.org/abs/1812.00332


Deep Learning Going “Tiny”

Cloud AI Mobile AI Tiny AI

Data centers 
Expensive 

Connection required 
Privacy issue

Smartphones 
Accessible 

Process locally

IoT Devices/ 
Microcontrollers 

Cheap, small, low-power 
Rapid growth 

- The future belongs to Tiny AI. 

- There are billions of IoT devices around the world based on microcontrollers

- Much cheaper, much smaller, almost everywhere in our lives. 

- If we can enable powerful AI algorithms on those IoT devices, we can greatly      

democratize AI and extend the applications of deep learning.



Widely deployed

Microcontrollers
The Era of AIoT on Microcontrollers (MCUs)



Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB 4GB

256GB

320kB

1MB~TB/PB

- Tiny model design is fundamentally different.

- No DRAM. No operating system (no virtual memory).

- Can’t directly scale. (non-proportional activation vs. params)



Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x 
smaller

50,000x 
smaller

- Tiny model design is fundamentally different.

- No DRAM. No operating system (no virtual memory).

- Can’t directly scale. (non-proportional activation vs. params)
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ResNet-18 MobileNetV2-0.75 MCUNet

(calculated in INT8)

Params:  
4.6x smaller

Activation:  
1.8x bigger!

(all with ~70% ImageNet Top-1)

Our budget 512KB

Today’s AI is too big! 
Existing work only reduces model size, but NOT activation
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ResNet-18 MobileNetV2-0.75 MCUNet

MCUNet:
6.1x

MCUNet:
3.4x

(all with ~70% ImageNet Top-1)

Reduce Both Model Size and Activation Size

simple applications

MCUNet

ImageNet-1K classification



MCUNet: TinyNAS+TinyEngine Co-design

TinyEngineTinyNAS

Efficient Compiler / Runtime

AutoML, Efficient Neural Architecture

MCUNet

•TinyNAS:
•Re-design the design space
•Latency-aware
•Energy-aware
•Once-for-all Network: 
train once, get many

•TinyEngine:
•Co-design, specialization
•Graph optimizations
•Memory-aware scheduling
•Low-precision
•Assembly-level optimizations
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70.7%

53.8%

TF-Lite Micro+MBv2 (scaled to fit MCU)
MCUNet (TinyNAS + TinyEngine)

MCUNet: Bring AI to IoT Devices

MIT researchers have developed a system, 
called MCUNet, that brings machine learning to 
microcontrollers. The advance could enhance the 
function and security of devices connected to the 
Internet of Things (IoT).   ——MIT News ImageNet 1K, Top-1 Accuracy

 

http://tinyml.mit.edu


TinyEngine: Memory Saving

18Measured on STM32 MCU



TinyEngine: Speedup

Measured on STM32 MCU



MCUNet: TinyNAS+TinyEngine

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)


39Baseline (MbV2*+CMSIS)


ImageNet Top1:   35%                    45%                    55%                    65%

* scaled down version: width multiplier 0.3,   input resolution 80



MCUNet: TinyNAS+TinyEngine

56
49

39Baseline (MbV2*+CMSIS)

System-only (MbV2**+TinyEngine)


Model-only (TinyNAS+CMSIS)


ImageNet Top1:   35%                    45%                    55%                    65%

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)


* scaled down version: width multiplier 0.3,   input resolution 80
** scaled down version: width multiplier 0.35,   input resolution 144



MCUNet: TinyNAS+TinyEngine

62
56

49
39Baseline (MbV2*+CMSIS)


System-only (MbV2**+TinyEngine)

Model-only (TinyNAS+CMSIS)


Co-design (TinyNAS+TinyEngine)

ImageNet Top1:   35%                    45%                    55%                    65%

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)


* scaled down version: width multiplier 0.3,   input resolution 80
** scaled down version: width multiplier 0.35,   input resolution 144



LibraryNN Model

(a) Search NN model on an existing library

e.g., ProxylessNAS, MnasNet

(b) Tune deep learning library given a NN model

e.g., TVM

LibraryNAS

Manual 
Architecture 

Design

Automatic
Architecture 

Search

Use Human Expertise Use Machine Learning
AutoML

Neural Architecture Search (NAS)

TinyNAS: Neural Architecture Search



Neural Architecture Search
Very expensive: can emit as much carbon as five cars in their lifetimes
Not affordable. 

Transformer with Neural Architecture Search

Fig: MIT Technology Review; Data: Strubell et al, ACL’19



Once-for-All Network

• Six first-place finishes in top competitions in efficient AI

Low search cost
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How to handle diverse MCU platforms?

Cortex M7 
STM32H743

(512kB/2MB)

Cortex M4

STM32F412

(256kB/1MB)

Cortex M7 
STM32F746

(320kB/1MB)
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Smaller child networks are 
nested in larger onesTrain once, get many

Fit diverse hardware constraints

Once-for-All Network

Cortex M7 
STM32H743

(512kB/2MB)

Cortex M4

STM32F412

(256kB/1MB)

Cortex M7 
STM32F746

(320kB/1MB)
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Once-for-All Network

full battery

Smaller child networks are 
nested in larger ones

Less battery
battery-saving  
mode

Train once, get many
Fit diverse battery constraints
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• Specializing models (int4) for different MCUs (SRAM/Flash)


Once-for-All Network
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The first to achieve >70% 
ImageNet top1 accuracy on 
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53.8
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65.9
63.562.0

ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Specializing models (int4) for different MCUs (SRAM/Flash)


MobileNetV2+CMSIS-NN

+17%

Once-for-All Network

The first to achieve >70% 
ImageNet top1 accuracy on 
commercial MCUs
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Once-for-All Network

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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80.1 2.6x faster

3.8% higher  
accuracy

Once-for-All Network
Train only once, handle diverse hardware constraints 

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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Once-for-All Network
Train only once, generate the entire Pareto curve

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf


36



0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81

Im
ag

eN
et

 T
op

-1
 a

cc
ur

ac
y 

(%
)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→

The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation

595M MACs 
80.0% Top-1

Model Size 

• Once-for-all model (ofa.mit.edu) sets a new state-of-the-art 80% ImageNet top-1 accuracy 
under the mobile vision setting (< 600M MACs).

Once-for-All Network
Trade-off of accuracy and MACs

http://ofa.mit.edu


Award Winning Technology

5th Low-Power Computer Vision 
Challenge

CPU detection 
FPGA detection CPU classification CPU detection DSP Recognition

Visual Wake Words 
Challenge @CVPR 2019

MicroNet Challenge  
@NeurIPS 2019

SemanticKITTI

4th Low-Power Computer Vision 
Challenge

3rd Low-Power Computer Vision 
Challenge

Visual Wake Words 
on TF-lite 

NLP track
Language Model

3D Semantic 
Segmentation
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NAAS: Neural Accelerator Architecture Search

Neural Accelerator Architecture Search, DAC’21 41

NAAS: Neural Accelerator Architecture Search

Neural Accelerator Architecture Search, DAC’21
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Best Fits: 
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Mapping

Update 
Sample Distribution Select 

Best Fits: 
Low EDP

Update 
Sample Distribution

E
volution

E
volution

For oh: 
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Hardware 
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  For ic: 
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       For ow:
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       For ow:

Sample

Mapping 
Search Space

Accelerator 
Architecture 

Search Space

HW Perf. 
Estimation

(MAESTRO)

EDP

NAAS

Decode

Decode

Neural 
Architecture 

Search Space Neural Network 
Population

Best 
Network 

Mutation & 
Crossover Select 

Best Fits: 
Low EDP

Evolution

Benchmarks

EDP with Best Mapping 
of Best Network

EDP with Best Mapping

Sample

Integrated with NAS

Fig. 1: Neural Accelerator Architecture Search.

over the large design space, NAAS leverages the biologically-
inspired evolution-based algorithm rather than meta-controller-
based algorithm to improve the sample efficiency. It keeps
improving the quality of the candidate population by ruling
out the inferior and generating from the fittest. Thanks to the
low search cost, NAAS can be easily integrated with hardware-
aware NAS algorithm by adding another optimization level
(Figure 1), achieving the joint search.

Extensive experiments verify the effectiveness of our frame-
work. Under the same #PE and on-chip memory constraints,
the NAAS is able to deliver 2.6⇥, 4.4⇥ speedup and 2.1⇥,
1.4⇥ energy savings on average compared to Eyeriss [14],
NVDLA [15] design respectively. Integrated with Once-For-All
NAS algorithm [4], NAAS further improves the top-1 accuracy
on ImageNet by 2.7% without hurting the hardware perfor-
mance. Using the similar compute resources, NAAS achieves
3.0⇥, 1.9⇥ EDP improvements compared to Neural-Hardware
Architecture Search [12], and NASAIC [11] respectively.

II. NEURAL ACCELERATOR ARCHITECTURE SEARCH

Figure 1 shows the optimization flow of Neural Accelerator
Architecture Search (NAAS). NAAS explores the design space
of accelerators, and compiler’s mappings simultaneously.

A. Accelerator Architecture Search
a) Design Space: The accelerator design knobs can be

categorized into two classes:

1) Architectural Sizing: the number of processing elements
(#PEs), private scratch pad size (L1 size), global buffer
size (L2 size), and memory bandwidth.

2) Connectivity Parameters: the number of array dimensions
(1D, 2D or 3D array), array size at each dimension, and
the inter-PE connections.

Most state-of-art searching frameworks only contains archi-
tectural sizing parameters in their design space. These sizing
parameters are numerical and can be easily embedded into
vectors during search. On the other hand, PE connectivity is
difficult to encode as vectors since they are not numerical
numbers. Moreover, changing the connectivity requires re-
designing the compiler mapping strategies, which extremely
increase the searching cost. In NAAS, besides the architectural
sizing parameters which are common in other frameworks, we
introduce the connectivity parameters into our search space,
making it possible to search among 1D, 2D and 3D array
as well, and thus our design space includes almost the entire
accelerator design space for neural network accelerators.

b) Encoding: We first model the PE connectivity as the
choices of parallel dimensions. For example, parallelism in
input channels (C) means a reduction connection of the partial
sum register inside each PE. Parallelism in output channels
means a broadcast to input feature register inside each PE. The
most straight-forward method to encode the parallel dimension
choice is to enumerate all possible parallelism situations and
choose the index of the enumeration as the encoding value.
However, since the increment or decrement of indexes does not
convey any physical information, it is hard to be optimized.

To solve this problem, we proposed the “importance-based”
encoding method for choosing parallelism dimensions in
the dataflow and convert the indexing optimization into the
sizing optimization. For each dimension, our optimizer will
generate an importance value. To get the corresponding parallel
dimensions, we first collect all the importance value, then sort
them in decreasing order, and select the first k dimensions as
the parallel dimensions of a k-D compute array. As shown
in the left of Figure 3, the generated candidate is a 2D array
with size 16⇥ 16. To find the parallel dimension for this 2D
array candidate, The importance values are first generated for
6 dimensions in the same way as other numerical parameters
in the encoding vector. We then sort the value in decreasing
order and determine the new order of the dimensions. Since
the importance value of “C” and “K” are the largest two
value, we finally select “C” and “K” as the parallel dimensions
of this 2D array. The importance value of the dimension
represents the priority of the parallelism: a larger value indicates
a higher priority and a higher possibility to be paralleled in the
computation loop nest, which contains higher relativity with
accelerator design compared to indexes of enumerations.

For other numerical parameters, we use the straight-forward
encoding method. The whole hardware encoding vector is
shown in Figure 2, which contains all of the necessary
parameters to represent an accelerator design paradigm.

c) Evolution Search: We leverage the evolution strat-
egy [17] to find the best solution during the exploration. In



Applications

We focus on large-scale datasets to reflect real-life use cases.


Datasets: 
(1) ImageNet-1000

(2) Wake Words


• Visual: Visual Wake Words

• Audio: Google Speech Commands
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Audio Wake Words (Speech Commands)
G

SC
 A

cc
ur

ac
y

88

90

92

94

96

0 340 680 1020 1360 1700

MCUNet MobileNetV2 ProxylessNAS

88

90

92

94

96

30 147.5 265 382.5 500

10FPS

5FPS
2.8× faster 4.1× smaller

2% higher

256kB  
constraint

Latency (ms) Peak SRAM (kB)
(a) Trade-off: accuracy vs. measured latency (b) Trade-off: accuracy vs. peak memory

OOM



Demo: Visual Wake Words on MCU

• Detecting if there is person 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 



Demo: Face Mask Detection on MCU

• Detecting faces & masks 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 



Demo: Person Detection on MCU

• Detecting persons 

• STM32F746

• 320KB SRAM

• 1MB Flash

• ARM Cortex-M7 @216MHz 



Model size: 37KB  (compared with MobileNet-v2: 3.5MB)
Computation: 352MOPs on 608x608 input resolution.  

Grocery Shelf Detection



MinkowskiNet: 3.4 FPS

SPVNAS (Ours): 9.1 FPS

Self-driving: a whole trunk of GPU

AR/VR: a whole backpack of computer

 
SPVNAS, ECCV’20

Mobile phone: limited battery 

accuracy ranks 1st on the SemanticKitti leaderboard

TinyML for Point Cloud



3D LiDAR Sensor 3D Point Cloud: 2M points/s

30fps

Liu et al. ICRA’21.TinyML for Driving

Demo:



GAN Compression, CVPR’20

TinyML for GAN

Demo:

https://arxiv.org/pdf/2003.08936.pdf
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TinyML for GANs AnyCost GAN, CVPR’21
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TinyML for GANs AnyCost GAN, CVPR’21



TinyML for NLP

HAT, ACL’20
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Table 1

Human Life 11023 5000

American Life 36156

US car including 
fuel

126000

Evolved 
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life 
(Avg. 1 year)

American Life 
(Avg. 1 year)
US Car w/ Fuel 
(Avg. 1 lifetime)

Evolved 
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)

Figure 9: The design cost measured in pounds of
CO2 emission. Our framework for searching HAT re-
duces the search cost by four orders of magnitude than
Evolved Transformer (So et al., 2019).

top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Quantization-Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any fine-tuning, 4-
bit quantization can reduce the model size by 25⇥
with negligible BLEU loss compared to the Trans-
former baseline (Table 5). Interestingly, the 8-bit
model even increases the BLEU by 0.1 than the 32-
bit floating-point version, indicating the robustness
of our searched HAT.

5 Related Work
Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling. By stacking
identical blocks, the model obtains a large capac-
ity but incurs high latency. Recently, a research
trend is to modify the Transformer to improve the
performance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed a method for training deep Trans-
formers by propagating multiple layers together in
the encoder. In those architectures, all layers are
still identical without fully leveraging the design
space. Another trend is to apply non- or partially-
autoregressive models to cut down the iteration
number for decoding (Gu et al., 2019; Akoury et al.,
2019; Wei et al., 2019; Gu et al., 2018). Although
reducing latency, they all suffer from low perfor-
mance. Anonymous (2020) investigated mobile

BLEU Model Size Reduction

Transformer Float32 41.2 705MB –
HAT Float32 41.8 227MB 3⇥
HAT 8 bits 41.9 57MB 12⇥
HAT 4 bits 41.1 28MB 25⇥

Table 5: K-means quantization of HAT models on
WMT’14 En-Fr. 4-bit quantization reduces model size
by 25⇥ with only 0.1 BLEU loss than transformer base-
line. 8-bit quantization even increases BLEU by 0.1
than its float version.

settings for NLP tasks and proposed a multi-branch
mobile Transformer. However, it relied on FLOPs
for efficient model design, which is an inaccurate
proxy for hardware latency (Figure 2).

Neural Architecture Search. In the computer
vision community, to obtain efficient models, there
has been an increasing interest in automating
model design with Neural Architecture Search
(NAS) (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018). Some of them also involved
hardware constraints into optimization such as
MNasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). To
reduce the high design cost of NAS, supernet based
methods (Guo et al., 2019; Bender et al., 2018) ap-
ply a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits from the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from extremely high search costs
(250 GPU years), making it infeasible to special-
ize models for various hardware and tasks. Also,
hardware latency feedback was not taken into con-
siderations for better case-by-case specialization.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient Trans-
former model deployment on the various kinds of
hardware platforms. We conduct hardware-aware
neural architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
which consumes four orders of magnitude less cost
than the prior Evolved Transformer and discovers
high-performance low-latency models. We hope
HAT can open up an avenue towards efficient Trans-
formers deployment for real-world applications.
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“Nice to meet you” “Encantada de conocerte” 
“만나서 반갑습니다” 
“உṛيᥠ֦ک” 
“Freut mich, dich kennenzulernen”

Efficient NLP on mobile devices 
enable real time conversation 
between speakers using different 
languages
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HAT: Hardware-Aware Transformers, ACL 2020 55

• HAT is orthogonal to general model compression techniques
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[HPCA’21] Hanrui Wang, Zhekai Zhang, Song Han;  “SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning” 

• Motivation: Attention layer in natural language processing models 
is the bottleneck for end-to-end performance. 

• Main idea: reduce redundancy 
1. Cascade Token and head pruning 
2. Progressive quantization: progressively fetch MSB and LSB

Attention 
operation is the 

bottleneck 

Cascade token and head pruning

TinyML for NLP HAT, ACL’20
SpAtten, HPCA’21

http://spatten.mit.edu
http://spatten.mit.edu


I3D: 
Latency: 164.3 ms/Video    Something-V1 Acc.: 41.6%

TSM: 
Latency: 17.4 ms/Video    Something-V1 Acc.: 43.4%

Speed-up: 9x

TSM, ICCV 2019TinyML for Video Recognition

https://arxiv.org/pdf/1811.08383.pdf


I3D: 
Throughput: 6.1 video/s    
Something-V1 Acc.: 41.6%

TSM: 
Throughput: 77.4 video/s    
Something-V1 Acc.: 43.4%

12.7x higher 
throughput

TinyML for Video Recognition TSM, ICCV 2019

https://arxiv.org/pdf/1811.08383.pdf


User Intelligent Edge Devices

New and Sensitive 
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

● Customization: AI systems need to continually adapt to new data collected from the sensors.  

● Security: Data cannot leave devices because of security and regularization. 

● We can reduce the training memory from 300MB to 16MB

Tiny Transfer Learning



Weight update is Memory-expensive;  
Bias update is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

, ∂L
∂bi

= ∂L
∂ai+1

= ∂L
∂ai+2

WT
i+1

Forward: 

Backward: 

• Updating weights requires storing intermediate activations 
• Updating biases does not



TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

Lite residual learning

UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules (small memory overhead) to increase model capacity 

weight bias

61

• (1/6 channel, 1/2 resolution, 2/3 depth)



Data-Efficient GAN
Train GAN with only 100 Images

Without our technique:

With our technique:



Train GANs with only 100 Images

Smooth interpolation, generalize well 
https://github.com/mit-han-lab/data-efficient-gans

https://github.com/mit-han-lab/data-efficient-gans


Project Page: http://tinyml.mit.edu

Cloud AI Mobile AI Tiny AI

ResNet MobileNet MCUNet

Summary: TinyML and Efficient Deep Learning



Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han


Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)
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less computation TinyML

Make AI Efficient, with Tiny Resource
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