Putting Al on a Diet: **TinyML and Efficient Deep Learning**

Song Han **Assistant Professor** Massachusetts Institute of Technology

https://songhan.mit.edu

From Cloud to Mobile to Tiny Al

Cloud Al

Data centers Expensive **Connection required** Privacy issue

From Cloud to Mobile to Tiny Al

Cloud Al Data centers Expensive **Connection required** Privacy issue

Mobile AI

- Smartphones
 - Low cost
 - Accessible
- **Process locally**

From Cloud to Mobile to Tiny Al

Cloud Al

Data centers Expensive **Connection required** Privacy issue

Mobile AI

- Smartphones
 - Low-cost
 - Accessible
- **Process locally**

Make AI run Fast and Efficiently with Limited Hardware Resource

Large Neural Networks

Model Compression & TinyML

Han, Mao, Dally, Deep Compression, ICLR'16, best paper award

Low-Power Hardware

I-IANI_AI=

Deep Compression

Make AI run Fast and Efficiently with Limited Hardware Resource

Original ResNet-50

with Deep Compression

Han, Mao, Dally, Deep Compression, ICLR'16, best paper award

Pruning & Sparsity

Increased attention since 2015

Optimal Brain Damage

Yann Le Cun, John S. Denker and Sara A. Solla AT&T Bell Laboratories, Holmdel, N. J. 07733

curve credits to NVIDIA

auto design small models

AMC: AutoML for Model Compression

[ECCV 2018]

1st Place of Visual Wakeup Words (VWW) Challenge 2019 Peak Memory Usage < 250KB, ours: <u>245KB</u> Model Size < 250KB, ours: <u>242KB</u> MAC < 60M, ours: <u>50M</u>, Accuracy: 94.6%

Deep Learning Going "Tiny"

Cloud Al	Ν
Data centers	Sma
Expensive	Ac
Connection required	Proc
Privacy issue	

- The future belongs to Tiny AI.
- Much cheaper, much smaller, almost everywhere in our lives.
- democratize AI and extend the applications of deep learning.

lobile Al

artphones ccessible cess locally

Tiny Al

IoT Devices/ Microcontrollers Cheap, small, low-power Rapid growth

- There are billions of IoT devices around the world based on microcontrollers - If we can enable powerful AI algorithms on those IoT devices, we can greatly

The Era of AloT on Microcontrollers (MCUs)

Smart Retail

Smart Manufacturing

Microcontrollers

Personalized Healthcare

Precision Agriculture

Smart Home

Autonomous Driving

Challenge: Memory Too Small to Hold DNN

Cloud Al

16GB

Memory (Activation)

Storage (Weights)

~TB/PB

- Tiny model design is fundamentally different.
- No DRAM. No operating system (no virtual memory).
- Can't directly scale. (non-proportional activation vs. params)

Challenge: Memory Too Small to Hold DNN

Today's AI is too big! Existing work only reduces model size, but NOT activation

(all with ~70% ImageNet Top-1)

(calculated in INT8)

Reduce Both Model Size and Activation Size

simple applications

ResNet-18 MobileNetV2-0.75 MCUNet (all with ~70% ImageNet Top-1)

Peak Activation (MB)

ImageNet-1K classification

MCUNet: TinyNAS+TinyEngine Co-design

- TinyNAS:
 - Re-design the design space
 - Latency-aware
 - Energy-aware
 - Once-for-all Network: train once, get many

• TinyEngine:

- Co-design, specialization
- Graph optimizations
- Memory-aware scheduling
- Low-precision
- Assembly-level optimizations

MCUNet: Bring AI to IoT Devices

MIT researchers have developed a system, called MCUNet, that brings machine learning to microcontrollers. The advance could enhance the function and security of devices connected to the Internet of Things (IoT). ——MIT News

ImageNet 1K, Top-1 Accuracy

TinyEngine: Memory Saving

Measured on STM32 MCU

OctoML

TinyEngine: Speedup

Measured on STM32 MCU

MCUNet: TinyNAS+TinyEngine

ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash) lacksquare

* scaled down version: width multiplier 0.3, input resolution 80

MCUNet: TinyNAS+TinyEngine

ImageNet classification on STM32F746 MCU (**320kB SRAM**, **1MB Flash**) \bullet

Baseline (MbV2*+CMSIS) **System-only** (MbV2**+TinyEngine) **Model-only** (TinyNAS+CMSIS)

ImageNet Top1: 35%

* scaled down version: width multiplier 0.3, input resolution 80 ** scaled down version: width multiplier 0.35, input resolution 144

MCUNet: TinyNAS+TinyEngine

ImageNet classification on STM32F746 MCU (**320kB SRAM**, **1MB Flash**) \bullet

* scaled down version: width multiplier 0.3, input resolution 80 ** scaled down version: width multiplier 0.35, input resolution 144

TinyNAS: Neural Architecture Search

Use Human Expertise

Manual Architecture Design

Neural Architecture Search (NAS)

Neural Architecture Search Very expensive: can emit as much carbon as five cars in their lifetimes Not affordable.

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Roundtrip flight b/w NY and SF (1 passenger)	1,984
Human life (avg. 1 year)	11,02
American life (avg. 1 year)	36
US car including fuel (avg. 1 lifetime)	126,00

Transformer (213M parameters) w/ neural architecture search

Transformer with Neural Architecture Search 626,155

HANLAL

Fig: MIT Technology Review; Data: Strubell et al, ACL'19

Low search cost

Six first-place finishes in top competitions in efficient AI

How to handle diverse MCU platforms?

Cortex M7 STM32H743 (<u>512kB</u>/2MB)

Cortex M7 STM32F746 (<u>320kB</u>/1MB)

Cortex M4 STM32F412 (<u>256kB</u>/1MB)

Train once, get many Fit diverse hardware constraints

STMS

Cortex

Cortex M7 STM32H743 (<u>512kB</u>/2MB)

Train once, get many Fit diverse battery constraints

• Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)

ImageNet Top-1 Accuracy (%)

• Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)

ImageNet Top-1 Accuracy (%)

The first to achieve >70% ImageNet top1 accuracy on **commercial MCUs**

Specializing models (int4) for different MCUs (<u>SRAM</u>/Flash)

ImageNet Top-1 Accuracy (%)

1417

MobileNetV3 MobileNetV2 \diamond

Once-for-All Network Train only once, handle diverse hardware constraints

Google Pixel1 Latency (ms)

Once-for-All, ICLR'20

1417

Train only once, generate the entire Pareto curve

Once-for-All, ICLR'20

ШiT

Once-for-All Network Trade-off of accuracy and MACs

14112

 \bullet under the mobile vision setting (< 600M MACs).

Once-for-all model (<u>ofa.mit.edu</u>) sets a new state-of-the-art 80% ImageNet top-1 accuracy

Award Winning Technology

CPU detection **FPGA** detection

5th Low-Power Computer Vision Challenge

Challenge

Visual Wake Words on TF-lite

Visual Wake Words Challenge @CVPR 2019

SemanticKITTI

CPU classification CPU detection

DSP Recognition

4th Low-Power Computer Vision

3rd Low-Power Computer Vision Challenge

3D Semantic Segmentation

NLP track Language Model

MicroNet Challenge @NeurIPS 2019

NAAS: Neural Accelerator Architecture Search

A Neural Abbeirgh Andergierge Search, DAC'21

We focus on large-scale datasets to reflect real-life use cases.

Datasets:

- (1) ImageNet-1000
- (2) Wake Words
 - Visual: Visual Wake Words
 - Audio: Google Speech Commands

(a) 'Person'

(b) 'Not-person'

Applications

yes

no

Visual Wake Words (VWW)

Visual Wake Words (VWW)

Visual Wake Words (VWW)

Audio Wake Words (Speech Commands)

Demo: Visual Wake Words on MCU

75% accuracy, fps: 2.9

87% accuracy, fps: 7.3

- Detecting if there is person
- STM32F746
- 320KB SRAM
- 1MB Flash
- ARM Cortex-M7 @216MHz

Demo: Face Mask Detection on MCU

- Detecting faces & masks
- STM32F746
- 320KB SRAM
- 1MB Flash
- ARM Cortex-M7 @216MHz

Demo: Person Detection on MCU

- Detecting persons
- STM32F746
- 320KB SRAM
- 1MB Flash
- ARM Cortex-M7 @216MHz

Model size: 37KB (compared with MobileNet-v2: 3.5MB) Computation: 352MOPs on 608x608 input resolution.

Grocery Shelf Detection

TinyML for Point Cloud

AR/VR: a whole backpack of computer

Self-driving: a whole trunk of GPU

Mobile phone: limited battery 1411

MinkowskiNet: 3.4 FPS

accuracy ranks 1st on the SemanticKitti leaderboard

Approach	Paper	Code	mloU	Classes (IoU)
SPVNAS	<u>ک</u>		67.0	
TORNADONet	<mark>ک</mark>		63.1	
KPRNet	<mark>ک</mark>		63.1	
Cylinder3D	<mark>ک</mark>	0	61.8	
FusionNet	<u></u>	0	61.3	
SalsaNext	<mark>ک</mark>	0	59.5	
KPConv	<u></u>	0	58.8	
SqueezeSegV3	<u></u>	0	55.9	

SPVNAS (Ours): 9.1 FPS

TinyML for Driving

3D LiDAR Sensor

3D Point Cloud: 2M points/s

Demo:

Шiī

Liu et al. ICRA'21.

TinyML for GAN

Accelerating Horse2zebra by GAN Compression

GAN Compression; FLOPs: 3.50G (16.2x); FPS: 40.0 (3.3x); FID: 53.6

Large Neural Networks

Demo:

Original CycleGAN; FLOPs: 56.8G; FPS: 12.1; FID: 61.5

Small Neural Networks

TinyML for GANs

MACs:

Large Neural Networks

AnyCost GAN, CVPR'21

1.0x reduction 100%

Small Neural Networks

TinyML for GANs

AnyCost GAN, CVPR'21

200	299
P	X
V	XX
Q	9
0	8

TinyML for NLP

On WMT'14 En-Fr Task

HAT, ACL'20 SpAtten, HPCA'21

TinyML for NLP

- **Motivation: Attention layer** in natural language processing models \bullet is the bottleneck for end-to-end performance.
- Main idea: reduce redundancy \bullet
- 1. Cascade Token and head pruning
- **2. Progressive quantization:** progressively fetch MSB and LSB

Cascade token and head pruning

HAT, ACL'20 SpAtten, HPCA'21

TinyML for Video Recognition

I3D: Latency: **164.3** ms/Video Something-V1 Acc.: **41.6**%

TSM: Latency: **17.4** ms/Video Something-V1 Acc.: **43.4**%

Speed-up: 9x

TSM, ICCV 2019

TinyML for Video Recognition

I3D: Throughput: **6.1** video/s Something-V1 Acc.: **41.6**%

<u>TSM</u>, ICCV 2019

TSM: Throughput: **77.4** video/s Something-V1 Acc.: 43.4%

12.7x higher throughput

Tiny Transfer Learning

- Security: Data cannot leave devices because of security and regularization.
- We can reduce the training memory from 300MB to 16MB

• Customization: Al systems need to continually adapt to new data collected from the sensors.

Weight update is Memory-expensive; **Bias update is Memory-efficient**

Forward:
$$\mathbf{a}_{i+1} = \mathbf{a}_i \mathbf{W}_i + \mathbf{b}_i$$

- Updating weights requires storing intermediate activations
- Updating biases does not

$$\frac{\partial L}{\partial \mathbf{b}_i} = \frac{\partial L}{\partial \mathbf{a}_{i+1}} = \frac{\partial L}{\partial \mathbf{a}_{i+2}} \mathbf{W}_{i+1}^T$$

TinyTL: Lite Residual Learning

- - (1/6 channel, 1/2 resolution, 2/3 depth)

Add lite residual modules (small memory overhead) to increase model capacity

Data-Efficient GAN

Train GAN with only 100 Images

Without our technique:

With our technique:

Train GANs with only 100 Images

Smooth interpolation, generalize well https://github.com/mit-han-lab/data-efficient-gans

Summary: TinyML and Efficient Deep Learning

Cloud Al

<u>ResNet</u>

Project Page: http://tinyml.mit.edu

<u>MobileNet</u>

Tiny AI MCUNet

Make AI Efficient, with **Tiny** Resource **HINITIATIVE**

songhan.mit.edu

