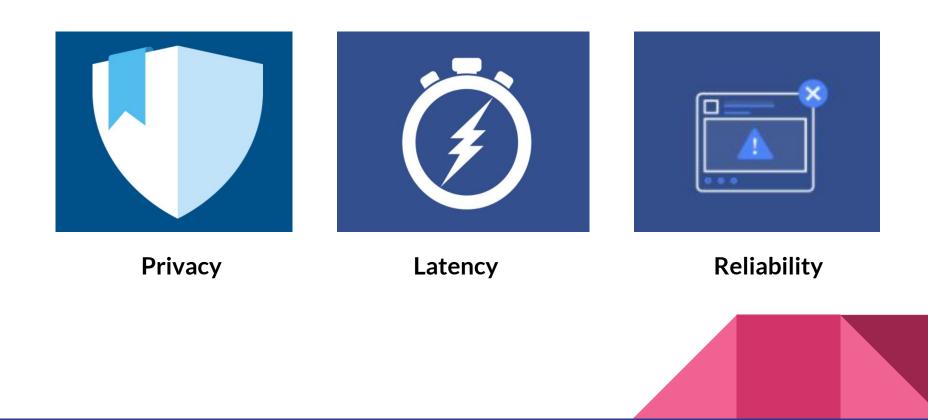
On-Device NLP @ Facebook

Ahmed Aly, Kshitiz Malik

Agenda

- On-Device NLP: Why?
- Challenges
- On-Device NLP @Facebook: Overview
- Horizontal approaches
- Open problems

On-Device NLP: Why?



On-Device NLP: Challenges

- Diverse and Strict compute and memory requirements
 - Diverse set of chipsets with different compute specs
 - Strict memory and compute budgets
- Power consumption and battery considerations
 - Always on Vs Portable

• Toolchain limitations

- DSP/GPU strict runtime platforms
- Pytorch Vs Pytorch Edge
- Tensorflow Vs Tensorflow light
- Model development experience
 - Stricter model releases and deployments
 - Harder benchmarking

On-Device NLP @Facebook: Overview

AI Assistant on Portal

On-Device NLP Tasks

• On-Device Natural Language Understanding (NLU)

Smart Keyboard on Oculus

On-Device NLP Tasks

- On-Device Language Modeling (LM)
- Federated learning

On-Device NLP Research

- Extreme model compression
- Light-weight CNN representations
- Neural architecture search
- On-Device Seq2Seq models (Accepted in NAACL 2021)

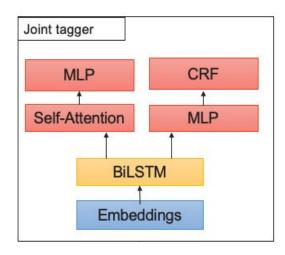
On-Device NLP @Facebook: On-Device NLU on Portal

NLU is the task of converting user utterances to machine understandable representation.

Simple

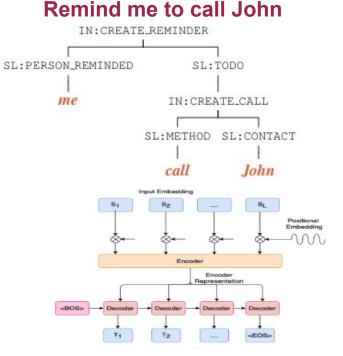
Call John

Call(Contact_name:John)



Server-side Baseline Model

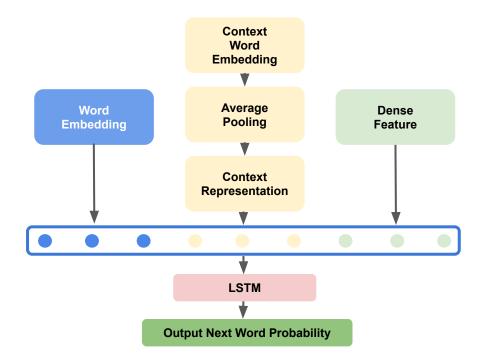
Hierarchical



Server-side Baseline Model

On-Device NLP @Facebook: On-Device LM on Oculus

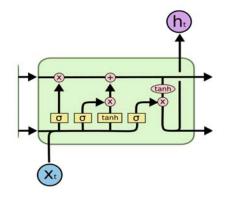
LM (for Smart Keyboard) is the task of predicting the most probable next word given the typed words/characters



Server-side Baseline Model

Horizontal Approaches: Latency

- Recurrence is slow!
 - Encoder: CNNs beat RNNs. <u>LightConv</u>
 - Decoder: <u>Non-autoregressive</u>
- Latency aware Neural Architecture Search (NAS)
- Efficient model layers: question everything
 - Separable Conv Layers
 - Combine Input and Forget Gates
 - Tightly coupled linear layers
- Optimized operator implementation
 - Custom LSTM implementation



Horizontal Approaches: Memory & Tooling

Memory

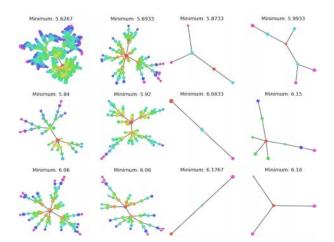
- Byte/Character Embeddings
 - Instead of word/ subword embeddings
- Neural Architecture Search (NAS)
- Quantization
- Sparsification (storage, bandwidth)

Tooling

- Compilers: <u>PyTorch Mobile</u>, <u>Glow</u>
- Benchmarking: <u>AI Bench</u>

Open Problems: Latency & Memory

- Transformers are <u>slow</u>
 - \circ O(n²) operations
 - Parallelizable great for GPUs, not mobile processors
- Non-autoregressive decoding <u>quality</u>
- Word embedding <u>compression</u>
- Graceful accuracy degradation
- Network architecture search
 - <u>Hardware-aware NAS</u>
 - NAS search efficiency



Open Problems: Tooling

- Benchmarking
 - Flops != Latency
 - Benchmarking is unreliable, slow
- Taming heterogeneity
 - Many <u>DSPs, GPUs, NPUs</u>
 - APIs: Metal (iOS), Vulcan (Android), OpenGL ES
 - Frameworks: Pytorch Mobile, TF, CoreML
- ML Compilers (Glow/TVM)
- Intermediate Representations (<u>MLIR</u>)

