
 

Copyright © 2010 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 1 of 14 

Cortex-M Processors and the 
Internet of Things (IoT) 
 

Why the processor matters? What are we doing to enable 
IoT and what are the challenges? 
 

 

 

 

Joseph Yiu       January 2013 
Andrew Frame 
 

Abstract 
In the last two years we have seen a vast increase in the number of Cortex-M microcontroller devices, 
many of them with Ethernet connectivity. In this paper we look at how the Cortex-M processor designs fit 
the requirements of Internet of Things (IoT) scenarios, and how the ARM ecosystems such as CMSIS and 
middleware are evolving to enable IoT development.  We also look into the challenges of achieving IoT, 
and new opportunities created by the IoT demands. 
 
(In the last two years we have seen a vast increase in the number of Cortex-M microcontroller devices, 
many of them with Ethernet connectivity. In this paper we look at how the Cortex-M processor designs 
satisfy the requirements of Internet of Things (IoT) scenarios, and how aspects of the ARM ecosystems 
such as CMSIS and the wide variety of middleware are evolving to enable IoT development.  We also 
look at the challenges of achieving IoT, and new opportunities created by the IoT demands.) 
 

Overview 
For many embedded product developers, the Internet of Things (IoT) might still sound purely like a 
marketing buzzword. While we have not seen any real coffee machine product with Internet connectivity 
yet (excluding hobbyist prototypes), there are many more electronic devices or infrastructure systems with 
built-in Internet connectivity.  Over the last few years we see a lot more microcontroller devices with 
Ethernet connectivity. Some of them have a PHY built-in, and some are available as a complete module 
with WIFI connectivity.  
 
While it is possible to implement an Internet enabled embedded system using various types of processor 
architectures, some processor architectures are better than others in such application areas. In this paper 
we will analyse how the ARM Cortex-M processors match the requirements of IoT scenarios, what we are 
doing to support the necessary softwaredevelopment and the challenges in achieving wider IoT 
deployment.   
 
While currently many Internet enabled embedded systems are implemented with application processors 
such as the ARM Cortex-A processors, ARM11 processors or x86 architecture, we will be focussing on 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 2 of 14 

low cost microcontrollers in this paper because eventually, when the IoT market takes off, most of the IoT 
enabled devices will be based on low cost microcontrollers rather than application processors. 
 

Background of the Cortex-M processors 
The ARM Cortex-M3 processor was the first product to be developed in the Cortex-M processor family. 
Microcontrollers based on the Cortex-M3 were first released in 2006, and now there are five processors in 
the Cortex-M processor family, with 12 microcontroller vendors supplying microcontrollers based on the 
Cortex-M processors and thousands of devices available. 
 

 
 
Different Cortex-M processor products support different ranges of instruction set.  The Cortex-M0, Cortex-
M0+ and Cortex-M1 processors are all based on the ARMv6-M architecture. The Cortex-M3 and Cortex-
M4 are based on ARMv7-M architecture, which has a larger instruction set. 
 
For general data processing and normal I/O control tasks, the ARMv6-M architecture is sufficient and 
provides the best energy efficiency.  For more complex data handling, the processors from the ARMv7-M 
architecture such as the Cortex-M3 provide additional instructions which accelerate data processing, as 
well as providing additional instructions for hardware divide, bit field processing and Multiply-Accumulate 
(MAC).  In more demanding data processing applications like Digital Signal Processing (DSP), the 
Cortex-M4 processor provides further instructions such as SIMD to enhance DSP performance. Some of 
the Cortex-M4 devices also include a floating point unit (i.e. Cortex-M4F) which provides optimized single 
precision floating calculation in the floating point hardware. 
 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 3 of 14 

 
 
 
All of the Cortex-M processors provide the NVIC (Nested Vectored Interrupt Controller) for flexible and 
deterministic interrupt management, and provide comprehensive debug features based on CoreSight 
Debug Architecture. 
 

Meeting the requirements of the IoT applications 
The ARM Cortex-M processors are well suited to a wide range of applications, including IoT applications. 
In most typical IoT applications we can find the following processor system requirements: 

 Low power 

 High code density 

 High performance 

 Memory space and addressing modes 

 OS friendly 

 Security 
 
Low power 
From the users point of view many IoT systems are “always on”. In practice the processors or 
microcontrollers could be in sleep mode most of the time, and wake up regularly to decode received 
Ethernet data, process the required data and for OS task scheduling.  Although many of them might be 
connected to the main electricity supply all the time, the energy consumption of the system can be 
considerable over a long period of time. The power wasted can be significant if the processor does not 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 4 of 14 

have good energy efficiency or low standby power.  And obviously, the requirement of low power is much 
more critical for battery powered products. 
 
The Cortex-M processors are designed to be very energy efficient and provide various low power features 
including architectural sleep modes, clock gating support, multi-power domains, etc. This enables the 
microcontrollers designed with Cortex-M processors to maintain low active power as well as ultra low idle 
power during sleep modes, whilst not compromising on performance and features. 
 
A processor with lower power consumption also has potential additional benefits by reducing the costs of 
the required power supply, and lower Electro Magnetic Interference (EMI).  In many wireless and safety 
critical applications, low EMI is critical.  Not only can it help the quality of the wireless communications, it 
also allows a reduction of the power required for data transmission, and reduced risk of causing 
interference problems to other devices which is especially important in medical and aviation applications. 
 
High code density 
All the Cortex-M processors are based on Thumb-2 Technology. The Thumb instruction set provides a 
mixture of 16-bit and 32-bit instructions under one operation state, and in most cases, the 16-bit 
instructions are used for better code density.  The high code density allows the designer to implement a 
system with a microcontroller device using a smaller flash memory, which can reduce the cost of the IoT 
product. It can also reduce the power consumed by the microcontroller device as the flash memory size 
required is reduced. 
 
Since most of the time 16-bit instructions are used, the processor often only needs to fetch instructions 
every other clock cycle. This reduces the power consumption of the system, as well as allowing more bus 
bandwidth for other data transfer operations. This can be important in devices with a fast Ethernet 
interface, as a DMA controller might be present in the system and need bus bandwidth to transfer data 
between the memory and the Ethernet interface. 
 
High performance 
All the Cortex-M processors are 32-bit processors, and offer much higher performance than many 8-bit 
and 16-bit microcontrollers.  Although it might be possible to implement an IoT product using legacy 16-bit 
or even 8-bit microcontrollers, using 32-bit processors has a number of advantages: 
 
With high processing power, it allows the IoT device to operate more reliably even if the amount of 
network activity generated by the end product might be unpredictable. If the network activity is higher than 
expected, an IoT device developed using a microcontroller with low performance might not be able to 
cope and crash.  Using a 32-bit microcontroller provides sufficient performance headroom to handle 
unexpected network traffic.  In some case, it might also provide a better chance for the IoT device to 
survive a DoS attack. 
 
A higher performance microcontroller can also provide the opportunity to include extra security measures 
such as encryption and authorization. These features provide better security to the end users, and should 
be deployed if the IoT device handles any sensitive or personal data. 
   
Obviously, better performance also enables better user experiences. For example, you can drive a 
graphic user interface easily and enable better feature set in your products. 
 
Memory space and addressing modes 
When the amount of internet activity increases in an IoT device, often it requires more memory to cope 
with the additional data for network packet processing.  In addition, the increasing feature requirements of 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 5 of 14 

IoT products means than you might need more memory space to accommodate the program image.  As a 
result, having a larger addressable memory space can be beneficial for system reliability as well as the 
performance of an IoT product.  However, in most 8-bit and 16-bit microcontrollers, the architecture only 
supports up to 64KB or 128KB of total memory space. This can become a major limitation for the 
potential features available in IoT products.  In the Cortex-M microcontrollers, the architecture uses a 32-
bit linear address and allows up to 4GB of total memory space. There is no need to use any memory 
paging technique, thereby allowing better performance and easier software development in Cortex-M 
microcontrollers when dealing with a larger memory space. 
 
The Cortex-M processors support various address modes of memory access.  These make the 
architecture C-friendly and hence provide good performance, as well as making it easy to program and 
debug. 
 
OS friendly 
In many IoT applications, it is essential to use an embedded OS to handle different tasks.  The 
architecture of the Cortex-M processors is designed with OS support in mind.  For example, the dual 
stack pointer mechanism allows an OS to be implemented easily, and at the same time allows efficient 
memory usage and reliable operation. The processors also include a 24-bit timer which is dedicated for 
OS System Tick interrupt generation.  These features make the porting of an OS across different Cortex-
M devices a simple task. 
 
For safety critical embedded applications, the embedded OS can also utilize the optional Memory 
Protection Unit (MPU) to provide memory access isolation.  This can prevent any application from 
corrupting data in other application task, hence greatly improve the reliability of a system. 
 
Currently there are already more than 30 embedded OS available for the Cortex-M processors, and the 
number is still rising. 
 
Security 
Besides better reliability, the optional MPU also provides better security to the embedded system.  When 
used together with the privileged and unprivileged execution levels, many of the tasks can be run in 
unprivileged mode to prevent security issues.  For example, the TCP/IP stack can be run at unprivileged 
level. In this way, even if the TCP/IP stack has a vulnerability and gets attacked by a hacker, it is likely 
that the attacker can only gain unprivileged access and cannot access other memory areas protected by 
the MPU. 
 
The high performance nature of the Cortex-M processors also makes it possible to implement 
sophisticated security measures in IoT.  For example, an application can implement additional checking 
to validate the external inputs from the Internet, and handle encryption/decryption of the data transfers 
even without hardware AES accelerators.  In addition, the higher performance also provides a better 
chance for an embedded device to survive a Denial-of-Service (DoS) attack. 
 
The Cortex-M processors also have a fault exception handling capability, which triggers fault exception 
handlers when certain types of errors are detected.  For example, when a system is under attack and an 
error condition has occurred, such as a branch to an invalid address space, the fault exception will be 
triggered and the fault handler can then carry out remedial actions such as restarting the system or killing 
a crashed application task. 
 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 6 of 14 

The view from the system hardware level 
The processor only occupies a small part of the silicon area in many modern microcontrollers.  The rest of 
the area is often taken up by flash and SRAM, peripherals and other analog circuits.  In order to allow a 
microcontroller to be used in IoT applications, the microcontroller designers also need to integrate various 
peripherals and features into the microcontroller products.  Typically, these include connectivity such as 
an Ethernet or WIFI interface, or wireless communication interfaces such as Zigbee, RFID, etc.   
 
Richer connectivity → Higher processing requirement 
Many microcontrollers also include features to enhance data-handling  performance.  For example, a 
DMA controller, a large data buffer in communication interface and multi-layer bus matrix for higher 
internal data bandwidth.  In addition, many microcontroller vendors also include hardware accelerators for 
cryptography purposes such as AES accelerators. However, often it is still down to the processor to 
process the information and therefore the performance of the processor is still critical.  The performance 
requirement might even be higher in products with an LCD display and Graphic User Interface (GUI), or in 
applications with additional connectivity such as USB, audio, memory cards, etc.  The peak performance 
required for such systems can be significantly higher than traditional low cost microcontroller capability 
ranges. 
 

 
 
Recently we have seen Cortex-M microcontroller products running at over 200MHz, and many others in 
the 100MHz frequency range.  Combining this high frequency capability and the high execution efficiency, 
the Cortex-M based microcontrollers can be used in a wide range of IoT applications, and yet still have a 
very low power profile which is similar to traditional 16-bit or 8-bit microcontroller, and at a similar price 
point. 
 
Low power at system level 
Besides performance requirements, ease of system level integration is also often a key requirement.  The 
Cortex-M processors support various low power interfaces to enable silicon designers to implement low 
power designs to achieve low operating power as well as idle power.  Many Cortex-M microcontrollers 
available today need less than 200µA/MHz during operation. 
 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 7 of 14 

 
Active current of low power Cortex-M microcontrollers 

 
The latest member of the Cortex-M family, the Cortex-M0+ processor, has also included optimizations to 
further reduce the system level power consumption, for example, by reducing the number of flash 
memory accesses required for a given task. 
 
 
Design scalability 
With a 32-bit linear address space, the Cortex-M processors can be used to control a wide range of 
peripherals, whereas many 8-bit and 16-bit architectures might not be able to control vast number of 
peripherals, or might suffer performance reduction when memory paging techniques is used. 
 
All the Cortex-M processors have an AHB Lite interface, an easy to use on-chip bus protocol which allows 
easy integration of memory and on-chip peripherals.  It also makes it possible to implement designs with 
multiple processor cores with shared memory and shared peripherals.  You can also add additional bus 
masters such as DMA controllers, or make some of the peripherals more intelligent which can initiate data 
transfers by themselves. 
 
For development of a product series with a variety of processing requirements, you can easily switch 
between low cost microcontrollers with Cortex-M0/M0+ to high performance Cortex-M4 microcontrollers. 
The consistent architecture and CMSIS allow easily porting of application code across processors, and 
many microcontroller vendors now offer Cortex-M microcontrollers with compatible pin count to make this 
even easier. 
 
For complex designs with multiple processor cores, the nature of multiple cores design can also lead to 
extra complexity in debugging.  The Cortex-M processors incorporate the CoreSight Debug Architecture, 
which allows easy integration of a debug system for multiple cores. This allows the multiple cores in the 
design to be debugged with just one set of debug and trace connections. 
 
 

Software challenges 
From the hardware point of view, the current generation of ARM microcontrollers is easily capable of 
handling IoT applications. However, there are significant challenges which remain in software. 
 
Software integration challenges 
Besides the widest range of 32-bit microcontroller device choices from various vendors, the users of ARM 
microcontrollers can also take advantage of the broadest range of software offerings including 
development tools, OS and middleware.  For example, a single IoT device might contain the following 
software: 

- Product specific application code 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 8 of 14 

- Device driver library from microcontroller vendor 
- RTOS 
- TCP/IP stack 
- Wireless / wired communication stack 
- Internet server/client software 
- GUI library 
- File system 
- Codec for image/audio processing 
- Cryptography library 
- Toolchain specific runtime library functions 

 
Currently there are more than 30 embedded OSes that can be used with Cortex-M microcontrollers, and 
you can use a compiler suite from over 10 vendors.  There are also large numbers of companies 
providing or developing other middleware for ARM microcontrollers.  The total ecosystem of the ARM 
microcontroller business is huge. 
 
The task of integrating these software components into an application could be time consuming, and 
could impose potential risks caused by incompatibility between software components.  To make it easier 
for embedded system developers, some microcontroller vendors developed a full set of libraries with an 
RTOS which can all work together out of the box.  The MQX RTOS from Freescale is a good example. 
 
However, for many other microcontroller users, they will have to integrate software components from 
different vendors.  In order to allow better integration of software components and tools from different 
vendors, ARM has created the Cortex-M Software Interface Standard (CMSIS).  The current CMSIS 
currently covers 5 areas: 
 
CMSIS-Core – a compiler independent API for software to access features on the processor such as 
interrupt control, system tick timer (SysTick) and special instructions. 
 
CMSIS-DSP – a DSP library containing commonly used DSP and related functions optimized for Cortex-
M4, and also supported on all Cortex-M microcontrollers. 
 
CMSIS-SVD – System View Descriptions is an XML based data set that microcontroller vendors create 
for debuggers so that debuggers from different tool vendors can understand the available peripheral in a 
microcontroller device. 
 
CMSIS-RTOS – A set of API for middleware and application code to access features such as task 
management in an embedded OS.  
 
CMSIS-DAP – A reference USB debug adaptor design that can be ported to various microcontroller 
devices with USB interface. 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 9 of 14 

 
Overview of how various CMSIS projects work together 

 
 
The CMSIS-RTOS is the recent addition to CMSIS. As software systems become more complex, many 
middleware products need to have interaction with the OS.  Currently, many middleware packages which 
need to be RTOS-independent have to resort to an extra layer of OS porting interface.  For example, 
LwIP has an OS emulation layer.   
 

Middleware

#1

Middleware

#2

Middleware

#3

RTOS

OS API

OS emulation 

layer

OS emulation 

layer

OS emulation 

layer

 
 

Currently middleware might need OS porting interface/OS emulation layer 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 10 of 14 

 
However, implementing the OS porting might not be straight forward, and can increase software 
development time: imagine for each middleware component you are using for a project, you might need 
to develop an OS porting interface.  For middleware vendors, it is equally difficult for them to make their 
middleware compatible with multiple embedded OS.  In addition, trying to analyze problems faced by their 
customers can be equally difficult.  As the ecosystem of the ARM Cortex-M microcontrollers expands, a 
consistent OS API is becoming a necessity. 
 

Middleware

#1

Middleware

#2

Middleware

#3

RTOS

CMSIS-RTOS API

 
CMSIS-RTOS : reduce the OS porting work for middleware 

 
The CMSIS-RTOS is intended to solve this problem.  It can be implemented natively on the OS, or 
implemented as a porting layer for an existing OS.  The CMSIS-RTOS specification only specifies the 
API, not the exact implementations, and OS vendors can add their own addition features and APIs. 
Therefore embedded OS vendors can still make their OS differentiate from others. 
 
 
IPv6 challenges 
In order to enable full scale deployment of IoT devices, IPv6 technology play an important role.  The 
challenges of IPv6 development include (and not limited to): 

- TCP/IP stack 
- Infrastructure 
- Testing 
- Performance 
- Code size 

 
TCP/IP stacks 
Currently the number of TCP/IP stacks supporting IPv6 is limited to a few choices. For example, LwIP and 
uIP both support IPv6. Many other commercial TCP/IP stack vendors are currently working on IPv6 but it 
may take a few years for IPv6 to be more widely deployed in microcontrollers. 
 
 
 



 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 11 of 14 

Infrastructure 
When working on IPv6 system designs, you need to have network equipment that supports IPv6.  While 
most modern PC platforms (Windows, Linux, Mac) all support IPv6, your home/business broadband 
routers, or even your ISP might not support this.  There are various workarounds, for example, by setting 
up a gateway on your network to handle IPv6 to IPv4 tunneling. However, this can add additional 
complexity of setting up your development and testing environments. 
 
Testing 
While you can test your IPv6 enabled in a controlled environment, testing it in the field can be much 
harder. Partly because you might have no control over which TCP/IP protocol will be used.  In addition, 
while there are lots of tools to help you testing IPv4, there are a limited number of tools for testing IPv6.  
Of course, this will change over time. 
 
Performance 
There can be two aspects related to performance: the first one is the performance of the microcontrollers 
will have to cope with the dual stacks implementation, and the second one is the performance and loss of 
IPv6 communication could be worst then IPv4 in some cases

12
. As a result, you might need to add 

additional headroom for communication performance/latency in your designs. 
 
Code size 
In order to implement dual stack, you need more program codes. While this is not a problem for PC or 
mobile computing platforms, this can be a problem for microcontrollers where the code size is generally 
limited to a smaller space. The code size can be significantly higher if secure communication protocol is 
needed.  For this case, the high code density and 32-bit addressing of ARM microcontrollers can be a 
significant advantage over 16-bit and 8-bit microcontrollers. 
 
 
Security challenges 
Security is critical for the majority of internet connected devices. Unlike traditional personal computers, 
many embedded devices are always on, and connected to the internet all the time.  Also, it is impossible 
to install firewall software on these devices.  The migration to IPv6 also means that more and more IoT 
devices will be directly connected to the internet with unique IP address, instead of sheltered in a local 
network behind NAT (Network Address Translation). 
 
In order to help improving security, many microcontrollers have built-in AES encryption accelerators and 
random number generators to accelerate encryption and decryption. On the software side, more and 
more software solutions are available to support secured connection such as Secure Sockets Layer 
(SSL) and Secure Shell (SSH), or even at IP level such as IPSec. However, software developers often 
still have to port these security software layers to utilize the security features (crypto accelerators). This is 
often a difficult task for inexperienced engineers. 
 

                                                           
1
 https://labs.ripe.net/Members/emileaben/measuring-world-ipv6-day-comparing-ipv4-and-ipv6-performance 

2
 http://www.caida.org/workshops/isma/1202/slides/aims1202_acox.pdf  

https://labs.ripe.net/Members/emileaben/measuring-world-ipv6-day-comparing-ipv4-and-ipv6-performance
http://www.caida.org/workshops/isma/1202/slides/aims1202_acox.pdf


 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 12 of 14 

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

OSI model TCP/IP Protocol

Application Layer

(HTTP, SMTP, POP)

Transport Layer

(TCP, UDP)

Internet Protocol (IP) 

Layer

Network Access Layer

(Ethernet, WiFi)

IPSec

SSL/TLS

Security enhancement

 
Typical methods for improving security of IoT applications 

 

Note: SSL allows a secure connection to be established on top of normal TCP/IP connection, and IPSec allows 

encrypted data transfers at a lower communication level  

 
To enable an embedded system to carry out secure connections such as SSL, a 32-bit processor is 
almost a must-have due to the code size and processing speed requirements.  Typically the SSL code 
size is at least 50KB, and the overall code sizes can easily exceed 128KB

3
. 

 
On a completely different aspect, the limited MPU support on embedded OS is another challenge for 
security. In order to take full advantage of the memory protection feature, the embedded OS should 
implement MPU support.  However, currently only a few embedded OS have MPU support. 
 
Standardization 
Openness is a key aspect of IoT system designs. In order to enable different parts of IoT systems to work 
together, standardization is essential. The required standardization is not only limited to the 
communication protocols, but also in the transaction level and up to the application levels.  
 
For example, in order to enable sensor devices from one company to be connected to a gateway from 
another company, and enable the gateway to be connected to servers built by other third parties, 
standardized communication protocols between these systems are needed.  Of course, the designs of the 
protocols not only need to be usable and scalable, but also need to be energy efficient, secure and low 
cost. 

                                                           
3
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NO

TE/DM00024859.pdf  

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NOTE/DM00024859.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/APPLICATION_NOTE/DM00024859.pdf


 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 13 of 14 

 
Currently there are varies activities in different organizations looking into establishing standards to enable 
a common platform for IoT application development: 

- OPC Foundation. An industrial focus organization that has developed an architecture for scalable 
M2M (Machine-to-Machine) connectivity, including communication from small embedded devices 
like sensors to remote servers. 

- The Internet of Things Initiative (www.iot-i.eu/public), an EU based program trying to bring various 
IoT communities together. 

In 2012 ARM formed a UK industrial group with a number of companies including EnLight , Neul, Alertme 
and AquaMW to look into what needs to be done to enable IoT development.  Also, ARM has joined the 
Weightless Special Interest Group, which is defining  a new specification for low cost, low power radio 
standards for IoT devices. 
 
Of course there are many companies developing various IoT solutions. Unfortunately, many of those 
activities are narrowly focused or just market exercises to push the products of those companies, without 
the aims to establish an open IoT ecosystem.  
 

Opportunities 
The future of IoT is full of challenges, but at the same time there are plenty of opportunities. Here we list a 
few obvious areas which have plenty of development potential. 
 
Middleware & IPv6 stacks 
To allow a wide range of potential IoT applications, there is a high demand for middleware and IPv6 
capable TCP/IP stacks.  Other middleware such as file systems, images and audio processing, VoIP, 
various servers and clients, network diagnosis tools and middleware for connectivity (e.g. USB, CAN) can 
also be in huge demand.  Recently Avnet has worked together with ARM and setup up an online store for 
embedded software

4
. 

 
The landscape for middleware could also be changed significantly. Instead of having separate 
middleware components, there is a demand for a higher level of integration of middleware components  
because integration of various software components takes significant time and effort. The result is that 
IoT software platforms include OS, TCP/IP, security, and potentially GUI and multi-media components.  
This change might happen in several different ways:  

a) silicon vendors might develop their own IoT platforms 
b) silicon vendors might work with a number of middleware suppliers to produce an IoT platform 
c) several middleware vendors might work together to produce IoT platform. 

 
With the ongoing effort on trying to standardize communication protocols for IoT applications, additional 
middleware could be needed to enable these protocols to be implemented. 
 
IoT modules and packages 
In addition to software platforms for IoT applications, we might also see a lot more companies developing 
ready-to-use IoT platforms with both software and hardware. For example, WI-FI modules for 
microcontrollers, WI-FI node

5
, board support packages, embedded system modules with preconfigured 

middleware, etc.  These allow much faster concept-to-market development and can greatly reduce project 
risks for product developers.  

                                                           
4
 Avnet Embedded Software Store (www.embeddedsoftwarestore.com).  

5
 http://www.edn.com/article/521814-Former_Apple_Google_Facebook_engineers_launch_IoT_startup.php  

http://www.iot-i.eu/public
http://www.embeddedsoftwarestore.com/
http://www.edn.com/article/521814-Former_Apple_Google_Facebook_engineers_launch_IoT_startup.php


 

Copyright © 2013 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 

Page 14 of 14 

 
Microcontrollers 
The IoT market provides plenty of chances for microcontroller vendors to establish product feature 
differentiations. Currently many Cortex-M microcontrollers with an Ethernet interface already provide 
various features such as hardware features to accelerate cryptography operations.  Some of the 
microcontroller designs also provide innovative smart peripherals which can handle limited data handling 
without CPU intervention. In addition, they can also provide various software packages such as 

- software code to accelerate commonly used SSL software with their specific crypto accelerators 
- Protocol stack for connectivity peripherals (e.g. Bluetooth, USB, RFID) 
- Device drivers for commonly used TCP/IP stacks 
- Pre-packaged IoT software platforms 

 
For these to happen, we can expect more collaboration between microcontroller vendors and middleware 
providers, as well as joint projects between multiple middleware suppliers. 
 
Tools vendors 
Software development tools are an essential part of this ecosystem.  Various tools might be needed for 
IoT product development such as network traffic generation and analysis tools. Potentially, debuggers 
could have some of these utilities built in. 
 
Training 
The ability to develop IoT applications will be in high demand, especially around implementation of 
network security.  For many embedded software developers with limited experience, starting to learn IoT 
programming might seem to be a big jump.  However, it is likely to be well worth the investment and time. 
 
The IoT can also be an interesting opportunity for companies that provide software training. 
 
 

Conclusions 
Do we have a conclusion? Well… yes and no… 
 
We are expecting a large increase in IoT products in the next decade, and the capabilities provided by 
ARM processors are well suited to most of these applications.  The ARM Cortex-M processor family 
meets the requirements of many IoT applications, and allows product designers to design a wide range of 
IoT products from low cost simple designs to high performance feature-rich products.  
 
While the microcontroller devices are perfectly capable of running IoT applications, there are still lots of 
challenges in IoT product designs.  The IoT is a new area for the microcontroller industry, and some of 
the technologies required for IoT applications might not be fully mature or not widely available.  The 
diversity of the embedded software ecosystem also creates various challenges for product designers.  
But for the same reason, the IoT also provides a lot of opportunities for various parties in the ARM 
ecosystem as the designers might need new middleware, tools and knowledge. 
 
Innovation happens all the time in the electronics industry. With new IoT opportunities, we could see new 
technologies, as well as well joint-ventures, or new business models emerging. 
 
 
 
 


