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What do we want?

* in unstructured, real world environments;

e with little user intervention;

Track and reconstruct the world: . , ,
* inreal time, on a mobile phone.

e without depth cameras.



3D Models for Objects and Scenes

Full Scenes




3D Object Reconstruction and Tracking




How would we do it?

Pose
optimisation

Shape optimisation
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Pose Optimisation

Assumes known 3D shape and per-pixel image
statistics.

Py, P, — image statistics (e.g. histograms)

@ — contour embedding SDF.

H, — Heaviside function
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Pose Derivative

0E dSDF dposition
= (term wrt Pr — Pb) X — X
dpose dposition dpose
Requires:

e Fast rendering of 3D shape
* Signed distance transform + derivative.



Fast Rendering

* Model is stored as 3D volume: standard rendering (raycasting) is very slow.

* We use a hierarchical binary raycaster.
— Alternate between image resizing and raycasting around the contour.



SDF + Derivatives

L)

 Computing full SDF + derivatives is very slow.

* We use per-contour-point local approximations.



SDF + Derivatives

~—

e Values of the SDF are obtained by following the per point normal.
* The SDF derivatives are computed using finite differences.



IMU Integration

* The mapping from shape to pose is ambiguous.

* We use the mobile phone IMU to provide disambiguated rotation at each
frame.

Previous pose

p G Preset calibration

Inertial Sensor

Current pose



Tracking Results

We obtain speeds > 80 fps on a phone.



Shape Optimisation

| assume known 3D pose and per-pixel image likelihoods.
For a set of images, we build inside/outside membership functions.

These represent the probability of a voxel being:
— Inside of the shape (i.e. foreground).
— OQutside of the shape (i.e. background).

Final shape obtained using a 3D segmentation optimisation.
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Reconstruction Results

Lion




Reconstruction Results




Reconstruction Results

Horse




Reconstruction Results




Conclusions

* | demoed an approach for 3D tracking and showed how you
could connected it to a reconstruction stage.

* We can get :
— state of the art 3D tracking speed.
— state of the art space carving based reconstruction results.

* Processing is fast enough to run on a mobile phone at over
80fps.



3D Models for Objects and Scenes

Objects

Full Scenes




Depth Fusion

Integration of depth images: KinectFusion [Newcombe et al, 2011]



Our Depth Fusion

milliseconds

Integration of depth images: InfiniTAM

more than 10x speedup (up to kHz speeds).
runs on mobile devices.
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InfiniTAM

DEMO



Map Representation
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Map Representation

3D voxel position in world coordinates
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Main Processing Steps

Tracking Fusion Rendering
Localises camera Fuses novel depth data
: . L Renders scene from
relative to the world into existing world . :
current viewpoint
model model

| |




1. Allocation
2.Visible List

—

3.Data Fusion

4.Swapping
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1. Allocation
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2.Visible List
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3.Data Fusion
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4.Swapping
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Rendering the map:

» Cast ray for each pixel.
* Take steps until D(X) =0

\

?

(
K
1)
)
N

— <
\



How to get it faster?

e Predict plausible depth range
e Optimise read operations.

e Draw only when needed.
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How to get it faster? 1
* Predict plausible depth range

The visible list allows us to predict
depth range:

e Forward project visible box
* Bounding box rather than full polygon. T K
* Low resolution projection
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Trackin

How to get it faster?

e Optimise read operations.
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How to get it faster?

Ul Image

* Draw only when needed. \ ,,

- Full raycast every few frames.
- Forward projection otherwise (much).

Forward
Projection

Forward
Projection

Full
Raycast

TPose
Pose

Tracker —— Tracker
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Weighted ICP
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Runtime Experiments

Runtime on different devices:

teddy sequence, 640 x 480 pixels

[Newcombe [NieBner
Device full forward none | etal, 2011] et al., 2013]
Nvidia Titan X 1.91ms 1.74ms 1.38ms 26.15ms 25.87ms
Nvidia Tegra K1 36.53ms 31.38ms  26.79ms - -
Apple iPad Air 2 82.60ms 65.55ms  56.10ms - -

Intel Core i7-5960X 45.28ms 46.75ms  35.40ms 502.69ms -

couch sequence, 320 x 240 pixels and IMU

[Newcombe [NieBner
Device full forward none | etal, 2011] et al., 2013]
Nvidia Titan X 1.17ms 1.10ms 0.87ms 19.34ms 15.18ms
Nvidia Tegra K1 25.58ms  21.04ms  19.38ms - -
Apple iPad Air 2 56.65ms 48.43ms 41.58ms - -

Intel Core i7-5960X 23.43ms 23.38ms 19.94ms | 312.86ms -




s it perfect? — No ©

Biggest problem: tracking drift

loop closure



Loop Closure




Graph of Submaps




Relative Constraints

Track the same image in multiple
submapsiand j: poses Ty; and Ti;.

Pose between submaps: Tyi; = Tt,_let,i

Robustly aggregate over time t to get
final estimate T;j;.

Stop tracking old scene on tracker failure.

Also add constraints on relocalisation.




Pose Graph Optimisation

Find global pose for each submap such that relative
constraints are satisfied.

z |V(Pi, P], Ti,j) |
Lj

P pose of submap
T relative constraint

v(T) = (q(T),t(T))"



Result: Drift is compensated ...
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... and processing is still quick
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frames

* Processing time: 7.1 — 8.5 ms per frame
* Remains constant

ms



Depth cameras ...

Take space.
Use lots of power.
Do not work outside.

We can do better ©

6D. Al I



Live Meshing Demo

DEMO



Underlying 3D Reconstruction

o

Active Vision
Laboratory




Underlying 3D Reconstruction

DEMO



Reconstructions can be very big ...

DEMO



How does it work?

Unicorn magic ...
(and neural nets)




How do | use it?

* You'll need:
—i0S 11.4+
— Xcode 9.4.1 + ARKit 1.5+
— Unity 2018.2+
— iPhone 8 and higher.
* Sign-up and get username + SDK.

* |nstall the SDK in your app.
— Standard drag and drop .framework on iOS.
— Developer keys need to be specified in Info.plist.



How do | use it?

Init:
SixDegreesSDK_Initialize(EAGLContext*); // init with this
SixDegreesSDK_IsInitialized(); // wait until this returns true

Get pose:
float pose[16];
SixDegreesSDK_GetPose(pose, 16); // get the pose here!

Get mesh:
int blockBufferSize, vertexBufferSize, faceBufferSize;

SixDegreesSDK_GetMeshBlockInfo(&blockBufferSize, &vertexBufferSize, &faceBufferSize); // gets the live mesh
info

int blockBuffer[blockBufferSize];
float vertexBuffer[vertexBufferSize];
int faceBuffer[faceBufferSize];

SixDegreesSDK_GetMeshBlocks(blockBuffer, vertexBuffer, faceBuffer, blockBufferSize, vertexBufferSize,
faceBufferSize); // gets the live mesh



Conclusion

SDK: www.6d.ai



http://www.6d.ai/

