
3D Reconstruction for AR

Prof Victor Adrian Prisacariu

Active Vision Lab
Department of Engineering Science, University of Oxford

6D.ai

What do we want?

• in unstructured, real world environments;

• with little user intervention;

• in real time, on a mobile phone.

• without depth cameras.

Track and reconstruct the world:

3D Models for Objects and Scenes

Full ScenesObjects

3D Object Reconstruction and Tracking

How would we do it?

Image IMU

Pose3D shape

3D tracking

Image stats
back-projection

3D
segmentation

Prob volume

Image stats

Po
se

o

p
ti

m
is

at
io

n
Sh

ap
e

o
p

ti
m

is
at

io
n

Pose Optimisation

𝐸 Φ = − log෍

𝑥𝜖𝐼

𝐻𝑒 Φ 𝑃𝑓 + 1 − 𝐻𝑒 Φ 𝑃𝑏

𝑃𝑏

𝑃𝑓

Φ Assumes known 3D shape and per-pixel image
statistics.

𝑃𝑓, 𝑃𝑏 – image statistics (e.g. histograms)

Φ – contour embedding SDF.

𝐻𝑒 – Heaviside function

Φ 𝑝𝑜𝑠𝑒

𝛿𝐸 Φ, 𝑝𝑜𝑠𝑒

𝛿𝑝𝑜𝑠𝑒
2D Segmentation and 3D pose:

𝜕𝐸

𝜕pose
= term wrt P𝑓 − 𝑃𝑏 ×

𝜕SDF

𝜕position
×
𝜕position

𝜕pose

Requires:

• Fast rendering of 3D shape

• Signed distance transform + derivative.

Pose Derivative

Fast Rendering

• Model is stored as 3D volume: standard rendering (raycasting) is very slow.

• We use a hierarchical binary raycaster.
– Alternate between image resizing and raycasting around the contour.

SDF + Derivatives

• Computing full SDF + derivatives is very slow.

• We use per-contour-point local approximations.

SDF + Derivatives

𝐱𝑖

𝐱𝑖+1

[𝑥 − 1, 𝑦] [𝑥, 𝑦]

• Values of the SDF are obtained by following the per point normal.

• The SDF derivatives are computed using finite differences.

IMU Integration

• The mapping from shape to pose is ambiguous.
• We use the mobile phone IMU to provide disambiguated rotation at each

frame.

𝑅𝑝𝑜Previous pose

𝑅𝑡0 𝑅𝑡1Inertial Sensor

𝑅𝑝1 Current pose

Preset calibration𝐶

Tracking Results

We obtain speeds > 80 fps on a phone.

Shape Optimisation

• I assume known 3D pose and per-pixel image likelihoods.
• For a set of images, we build inside/outside membership functions.
• These represent the probability of a voxel being:

– Inside of the shape (i.e. foreground).
– Outside of the shape (i.e. background).

• Final shape obtained using a 3D segmentation optimisation.

Reconstruction Results

Reconstruction Results

Reconstruction Results

Reconstruction Results

Conclusions

• I demoed an approach for 3D tracking and showed how you
could connected it to a reconstruction stage.

• We can get :

– state of the art 3D tracking speed.

– state of the art space carving based reconstruction results.

• Processing is fast enough to run on a mobile phone at over
80fps.

3D Models for Objects and Scenes

Full ScenesObjects

Depth Fusion

Integration of depth images: KinectFusion [Newcombe et al, 2011]

Our Depth Fusion

Integration of depth images: InfiniTAM

more than 10x speedup (up to kHz speeds).
runs on mobile devices.

InfiniTAM

DEMO

Map Representation

the band holds a truncated SDFthe map only stores voxels close to the surfacesthe T-SDF is discretized into voxels

Map Representation

Main Processing Steps

Tracking

Localises camera
relative to the world

model

Fusion

Fuses novel depth data
into existing world

model

Rendering

Renders scene from
current viewpoint

Tracking Fusion Rendering

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

Tracking Fusion Rendering

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

Tracking Fusion Rendering

Tracking Fusion Rendering

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

Tracking Fusion Rendering

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

Tracking Fusion Rendering

1.Allocation
2.Visible List
3.Data Fusion
4.Swapping

Tracking Fusion Rendering

Rendering the map:
• Cast ray for each pixel.
• Take steps until D(X) = 0

Tracking Fusion Rendering

How to get it faster?
• Predict plausible depth range
• Optimise read operations.
• Draw only when needed.

Tracking Fusion Rendering

How to get it faster?
• Predict plausible depth range
• Optimise read operations.
• Draw only when needed.

The visible list allows us to predict
depth range:
• Forward project visible box
• Bounding box rather than full polygon.
• Low resolution projection

Tracking Fusion Rendering

Tracking Fusion Rendering

How to get it faster?
• Predict plausible depth range
• Optimise read operations.
• Draw only when needed.

How to get it faster?
• Predict plausible depth range
• Optimise read operations.
• Draw only when needed.
‐ Full raycast every few frames.
‐ Forward projection otherwise (much).

Tracking Fusion Rendering

෍

𝑝

𝑤𝑝 R𝑝 + t − 𝑉 ҧ𝑝
𝑇
𝑁 ҧ𝑝

2

𝑉 ҧ𝑝𝑝

[R, t]

Weighted ICP

Tracking Fusion Rendering

Runtime Experiments

Is it perfect? – No ☺

Biggest problem: tracking drift

loop closure

Loop Closure

Graph of Submaps

Relative Constraints

• Track the same image in multiple
submaps i and j: poses 𝐓t,i and 𝐓t,j.

• Pose between submaps: 𝐓t,i,j = 𝐓t,j
−1𝐓t,i

• Robustly aggregate over time t to get
final estimate 𝐓i,j.

• Stop tracking old scene on tracker failure.

• Also add constraints on relocalisation.

Pose Graph Optimisation

Find global pose for each submap such that relative
constraints are satisfied.

𝐏 pose of submap
𝐓 relative constraint

𝐯 𝐓 = 𝐪 𝐓 , 𝐭 𝐓
T

෍

𝑖,𝑗

𝐯(𝐏i, 𝐏j, 𝐓i,j)

Result: Drift is compensated …

… and processing is still quick

• Processing time: 7.1 – 8.5 ms per frame

• Remains constant

Depth cameras …

• Take space.

• Use lots of power.

• Do not work outside.

• We can do better ☺

Live Meshing Demo

DEMO

Underlying 3D Reconstruction

Underlying 3D Reconstruction

DEMO

Reconstructions can be very big …

DEMO

How does it work?

How do I use it?

• You’ll need:
– iOS 11.4+

– Xcode 9.4.1 + ARKit 1.5+

– Unity 2018.2+

– iPhone 8 and higher.

• Sign-up and get username + SDK.

• Install the SDK in your app.
– Standard drag and drop .framework on iOS.

– Developer keys need to be specified in Info.plist.

How do I use it?

Init:

SixDegreesSDK_Initialize(EAGLContext*); // init with this

SixDegreesSDK_IsInitialized(); // wait until this returns true

Get pose:

float pose[16];

SixDegreesSDK_GetPose(pose, 16); // get the pose here!

Get mesh:

int blockBufferSize, vertexBufferSize, faceBufferSize;

SixDegreesSDK_GetMeshBlockInfo(&blockBufferSize, &vertexBufferSize, &faceBufferSize); // gets the live mesh
info

int blockBuffer[blockBufferSize];

float vertexBuffer[vertexBufferSize];

int faceBuffer[faceBufferSize];

SixDegreesSDK_GetMeshBlocks(blockBuffer, vertexBuffer, faceBuffer, blockBufferSize, vertexBufferSize,
faceBufferSize); // gets the live mesh

Conclusion

SDK: www.6d.ai

http://www.6d.ai/

