3D Reconstruction for AR

Prof Victor Adrian Prisacariu 6D A %

Active Vision Lab
Department of Engineering Science, University of Oxford

6D.ai

UNIVERSITY OF

OXFORD

What do we want?

* in unstructured, real world environments;

e with little user intervention;

Track and reconstruct the world: . , ,
* inreal time, on a mobile phone.

e without depth cameras.

3D Models for Objects and Scenes

Full Scenes

3D Object Reconstruction and Tracking

How would we do it?

Pose
optimisation

Shape optimisation

segmentation

Prob volume

Image stats IMU
3D tracking
3D shape Pose
‘ \ 4
3D Image stats

back-projection

Pose Optimisation

Assumes known 3D shape and per-pixel image
statistics.

Py, P, — image statistics (e.g. histograms)

@ — contour embedding SDF.

H, — Heaviside function

E(¢>D=seg&egt§aéld@mﬂ¢saf @'“Tq’i"éﬁi)lﬂb}

poS§e
Xel

Pose Derivative

0E dSDF dposition
= (term wrt Pr — Pb) X — X
dpose dposition dpose
Requires:

e Fast rendering of 3D shape
* Signed distance transform + derivative.

Fast Rendering

* Model is stored as 3D volume: standard rendering (raycasting) is very slow.

* We use a hierarchical binary raycaster.
— Alternate between image resizing and raycasting around the contour.

SDF + Derivatives

L)

 Computing full SDF + derivatives is very slow.

* We use per-contour-point local approximations.

SDF + Derivatives

~—

e Values of the SDF are obtained by following the per point normal.
* The SDF derivatives are computed using finite differences.

IMU Integration

* The mapping from shape to pose is ambiguous.

* We use the mobile phone IMU to provide disambiguated rotation at each
frame.

Previous pose

p G Preset calibration

Inertial Sensor

Current pose

Tracking Results

We obtain speeds > 80 fps on a phone.

Shape Optimisation

| assume known 3D pose and per-pixel image likelihoods.
For a set of images, we build inside/outside membership functions.

These represent the probability of a voxel being:
— Inside of the shape (i.e. foreground).
— OQutside of the shape (i.e. background).

Final shape obtained using a 3D segmentation optimisation.

200
200

180
160
150+ i
120
100 100

80
50 &
40

20

0

160

150 "

100

200

150

Reconstruction Results

Lion

Reconstruction Results

Reconstruction Results

Horse

Reconstruction Results

Conclusions

* | demoed an approach for 3D tracking and showed how you
could connected it to a reconstruction stage.

* We can get :
— state of the art 3D tracking speed.
— state of the art space carving based reconstruction results.

* Processing is fast enough to run on a mobile phone at over
80fps.

3D Models for Objects and Scenes

Objects

Full Scenes

Depth Fusion

Integration of depth images: KinectFusion [Newcombe et al, 2011]

Our Depth Fusion

milliseconds

Integration of depth images: InfiniTAM

more than 10x speedup (up to kHz speeds).
runs on mobile devices.

ICP iteration Raycast Download
: : Integrate
Tracking : L Fusion : i Rendering
0 5 10 15 20 25 30
milliseconds
Tracking
Fusion
Rendering : : : ; :
0 5 10 15 20 25 30

InfiniTAM

DEMO

Map Representation

the mattbdlfitioik didse iredsatiahbets rfaces

Map Representation

3D voxel position in world coordinates

[

' Hash function |

{]D{]D Ininii

DDUDDUDUD

/ Hash Table

[

Unordered entrie

Voxel Block Array

Main Processing Steps

Tracking Fusion Rendering
Localises camera Fuses novel depth data
: . L Renders scene from
relative to the world into existing world . :
current viewpoint
model model

| |

1. Allocation
2.Visible List

—

3.Data Fusion

4.Swapping

N

1. Allocation

(
\
=
)
:

\l

1. Allocation

(
K
=
)
:

\l

1. Allocation

(
K
=
)
N
o

\

\l

2.Visible List

X X N

3.Data Fusion

X
HXR XX
XX

X

"(\
<O e |
R ﬁd‘p‘ag
SN e
o2

4.Swapping

~_

Rendering the map:

» Cast ray for each pixel.
* Take steps until D(X) =0

\

?

(
K
1)
)
N

— <
\

How to get it faster?

e Predict plausible depth range
e Optimise read operations.

e Draw only when needed.

(
K
1)
)
N

— <
\

How to get it faster? 1
* Predict plausible depth range

The visible list allows us to predict
depth range:

e Forward project visible box
* Bounding box rather than full polygon. T K
* Low resolution projection

(
\
\
)
\

Y,

\

Trackin

How to get it faster?

e Optimise read operations.

W

—

How to get it faster?

Ul Image

* Draw only when needed. \ ,,

- Full raycast every few frames.
- Forward projection otherwise (much).

Forward
Projection

Forward
Projection

Full
Raycast

TPose
Pose

Tracker —— Tracker

cloud

Tracker Tracker

frame frame frame frame

Weighted ICP
2
D> wy ((Rp +t-v @) VD))
p

Runtime Experiments

Runtime on different devices:

teddy sequence, 640 x 480 pixels

[Newcombe [NieBner
Device full forward none | etal, 2011] et al., 2013]
Nvidia Titan X 1.91ms 1.74ms 1.38ms 26.15ms 25.87ms
Nvidia Tegra K1 36.53ms 31.38ms 26.79ms - -
Apple iPad Air 2 82.60ms 65.55ms 56.10ms - -

Intel Core i7-5960X 45.28ms 46.75ms 35.40ms 502.69ms -

couch sequence, 320 x 240 pixels and IMU

[Newcombe [NieBner
Device full forward none | etal, 2011] et al., 2013]
Nvidia Titan X 1.17ms 1.10ms 0.87ms 19.34ms 15.18ms
Nvidia Tegra K1 25.58ms 21.04ms 19.38ms - -
Apple iPad Air 2 56.65ms 48.43ms 41.58ms - -

Intel Core i7-5960X 23.43ms 23.38ms 19.94ms | 312.86ms -

s it perfect? — No ©

Biggest problem: tracking drift

loop closure

Loop Closure

Graph of Submaps

Relative Constraints

Track the same image in multiple
submapsiand j: poses Ty; and Ti;.

Pose between submaps: Tyi; = Tt,_let,i

Robustly aggregate over time t to get
final estimate T;j;.

Stop tracking old scene on tracker failure.

Also add constraints on relocalisation.

Pose Graph Optimisation

Find global pose for each submap such that relative
constraints are satisfied.

z |V(Pi, P], Ti,j) |
Lj

P pose of submap
T relative constraint

v(T) = (q(T),t(T))"

Result: Drift is compensated ...

overview after|§
e 1o

... and processing is still quick

10

20 | [| | | | 20
total submaps —
active submaps
15 |- runtime 1 15
10
5 5
0 0
0 1000 2000 3000 4000 5000 6000 7000

frames

* Processing time: 7.1 — 8.5 ms per frame
* Remains constant

ms

Depth cameras ...

Take space.
Use lots of power.
Do not work outside.

We can do better ©

6D. Al I

Live Meshing Demo

DEMO

Underlying 3D Reconstruction

o

Active Vision
Laboratory

Underlying 3D Reconstruction

DEMO

Reconstructions can be very big ...

DEMO

How does it work?

Unicorn magic ...
(and neural nets)

How do | use it?

* You'll need:
—i0S 11.4+
— Xcode 9.4.1 + ARKit 1.5+
— Unity 2018.2+
— iPhone 8 and higher.
* Sign-up and get username + SDK.

* |nstall the SDK in your app.
— Standard drag and drop .framework on iOS.
— Developer keys need to be specified in Info.plist.

How do | use it?

Init:
SixDegreesSDK_Initialize(EAGLContext*); // init with this
SixDegreesSDK_IsInitialized(); // wait until this returns true

Get pose:
float pose[16];
SixDegreesSDK_GetPose(pose, 16); // get the pose here!

Get mesh:
int blockBufferSize, vertexBufferSize, faceBufferSize;

SixDegreesSDK_GetMeshBlockInfo(&blockBufferSize, &vertexBufferSize, &faceBufferSize); // gets the live mesh
info

int blockBuffer[blockBufferSize];
float vertexBuffer[vertexBufferSize];
int faceBuffer[faceBufferSize];

SixDegreesSDK_GetMeshBlocks(blockBuffer, vertexBuffer, faceBuffer, blockBufferSize, vertexBufferSize,
faceBufferSize); // gets the live mesh

Conclusion

SDK: www.6d.ai

http://www.6d.ai/

