3D Reconstruction for AR

Prof Victor Adrian Prisacariu

Active Vision Lab Department of Engineering Science, University of Oxford 6 D. A I

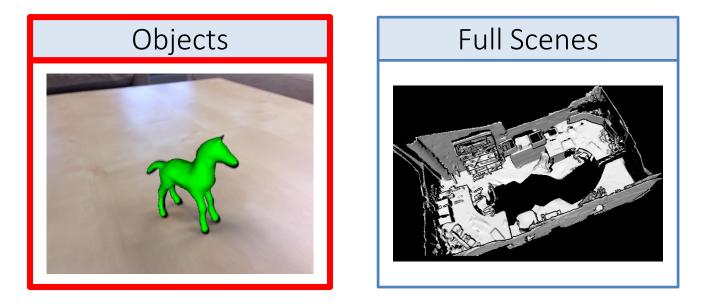
6D.ai

What do we want?

Track and reconstruct the world:

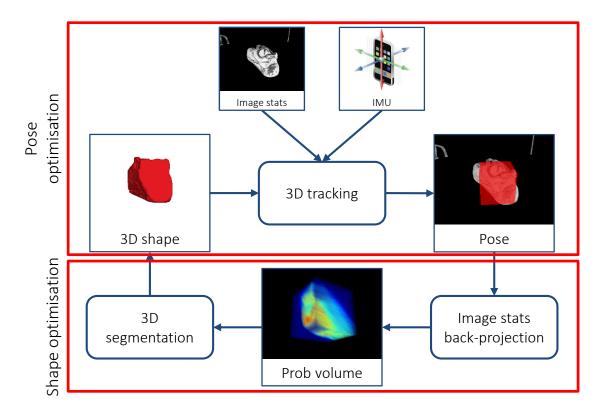
- in unstructured, real world environments;
- with little user intervention;
- in real time, on a mobile phone.
- without depth cameras.

3D Models for Objects and Scenes

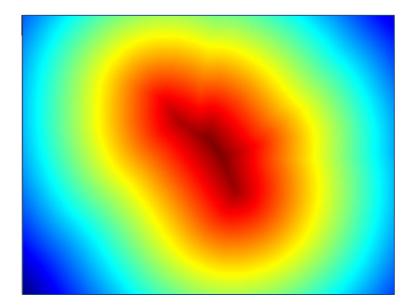


3D Object Reconstruction and Tracking

How would we do it?



Pose Optimisation



Assumes known 3D shape and per-pixel image statistics.

$$P_f$$
, P_b – image statistics (e.g. histograms)

 $\Phi-$ contour embedding SDF.

 H_e – Heaviside function

$$E(\Phi) \xrightarrow{\text{Begring}} \sum_{x \in I} \{H_{\mathcal{B}}(\Phi) \xrightarrow{\mathcal{B}_{\mathcal{F}}} \frac{\delta E(\Phi, pose)}{(1 - \frac{H_{\mathcal{B}}(\Phi)}{\delta pose})} P_b \}$$

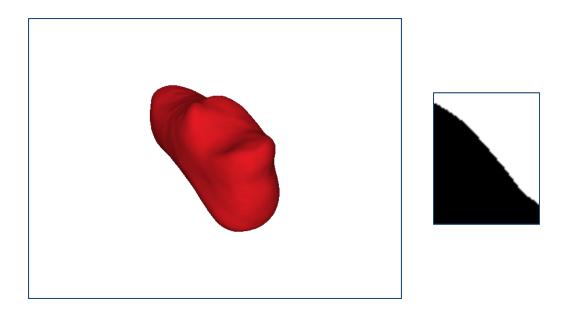
Pose Derivative

$$\frac{\partial E}{\partial \text{pose}} = (\text{term wrt } P_f - P_b) \times \frac{\partial \text{SDF}}{\partial \text{position}} \times \frac{\partial \text{position}}{\partial \text{pose}}$$

Requires:

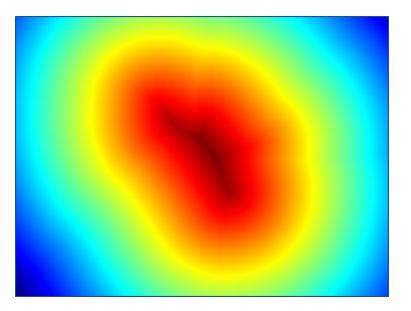
- Fast rendering of 3D shape
- Signed distance transform + derivative.

Fast Rendering



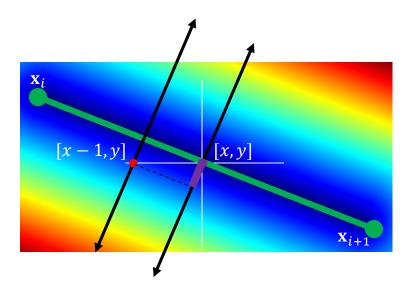
- Model is stored as 3D volume: standard rendering (raycasting) is very slow.
- We use a hierarchical binary raycaster.
 - Alternate between image resizing and raycasting around the contour.

SDF + Derivatives



- Computing full SDF + derivatives is very slow.
- We use per-contour-point local approximations.

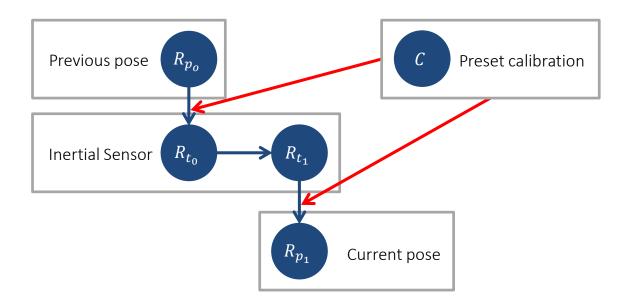
SDF + Derivatives



- Values of the SDF are obtained by following the per point normal.
- The SDF derivatives are computed using finite differences.

IMU Integration

- The mapping from shape to pose is ambiguous.
- We use the mobile phone IMU to provide disambiguated rotation at each frame.

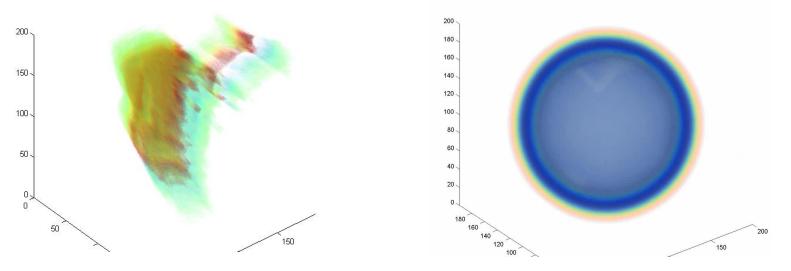


Tracking Results

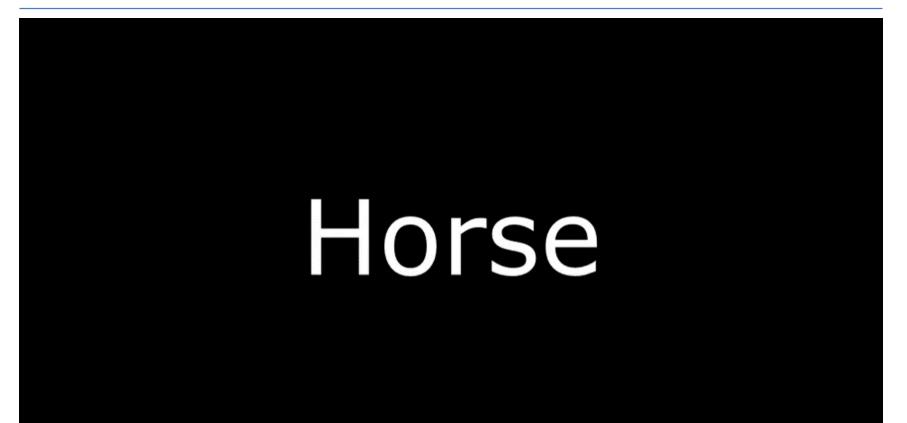
We obtain speeds > 80 fps on a phone.

Shape Optimisation

- I assume known 3D pose and per-pixel image likelihoods.
- For a set of images, we build inside/outside membership functions.
- These represent the probability of a voxel being:
 - Inside of the shape (i.e. foreground).
 - Outside of the shape (i.e. background).
- Final shape obtained using a 3D segmentation optimisation.





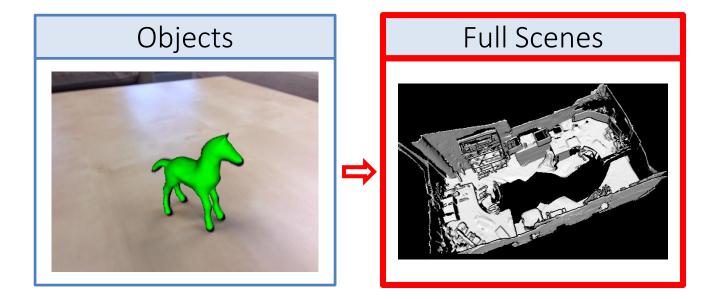


Conclusions

• I demoed an approach for 3D tracking and showed how you could connected it to a reconstruction stage.

- We can get :
 - state of the art 3D tracking speed.
 - state of the art space carving based reconstruction results.
- Processing is fast enough to run on a mobile phone at over 80fps.

3D Models for Objects and Scenes

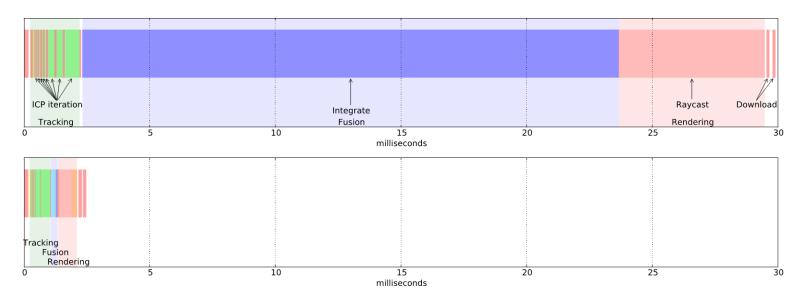


Depth Fusion



Integration of depth images: KinectFusion [Newcombe et al, 2011]

Our Depth Fusion



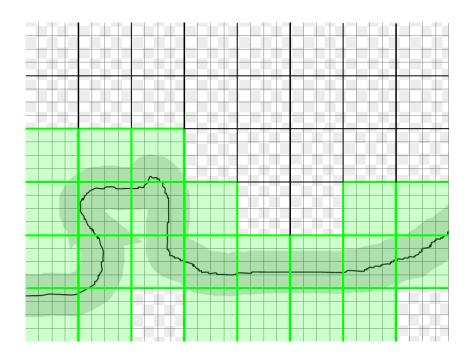
Integration of depth images: InfiniTAM

more than **10x speedup (up to kHz speeds).** runs on **mobile devices.**

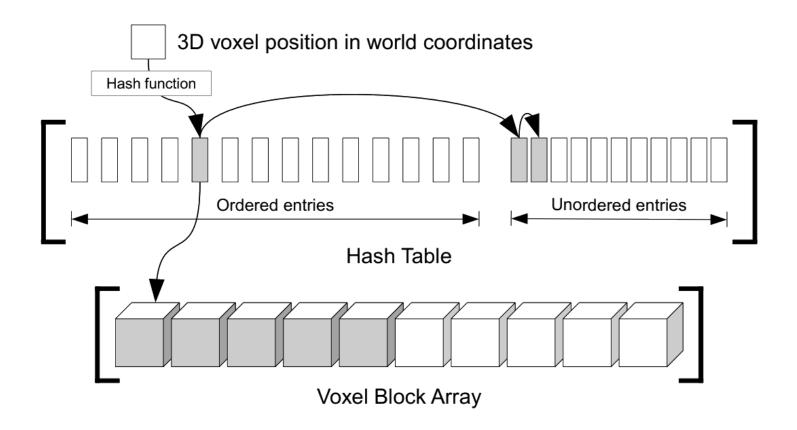
InfiniTAM

Map Representation

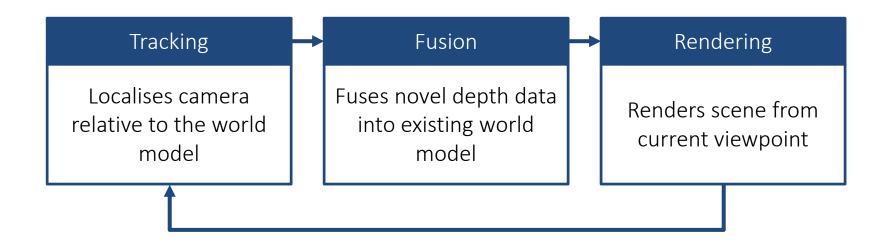
the mathted & Storing of Market State & Storing of Market State & Storing of Market &

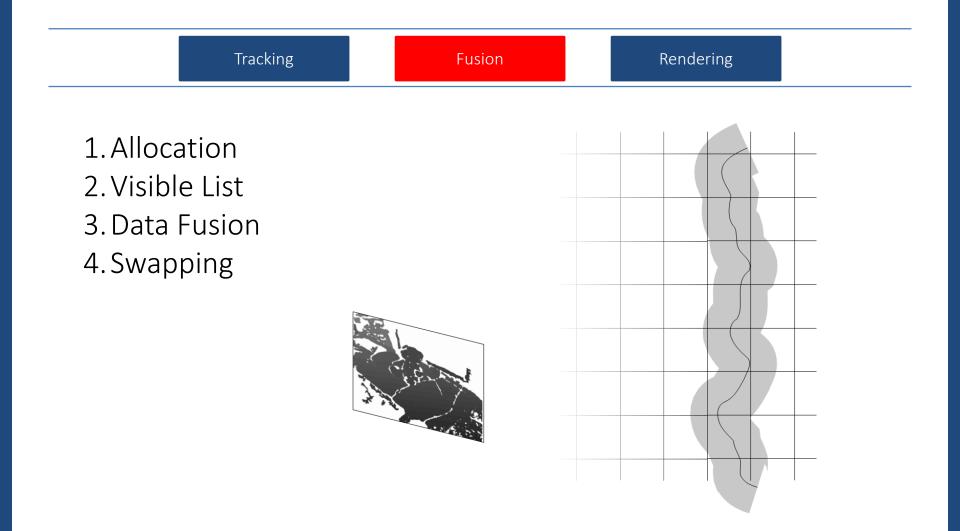


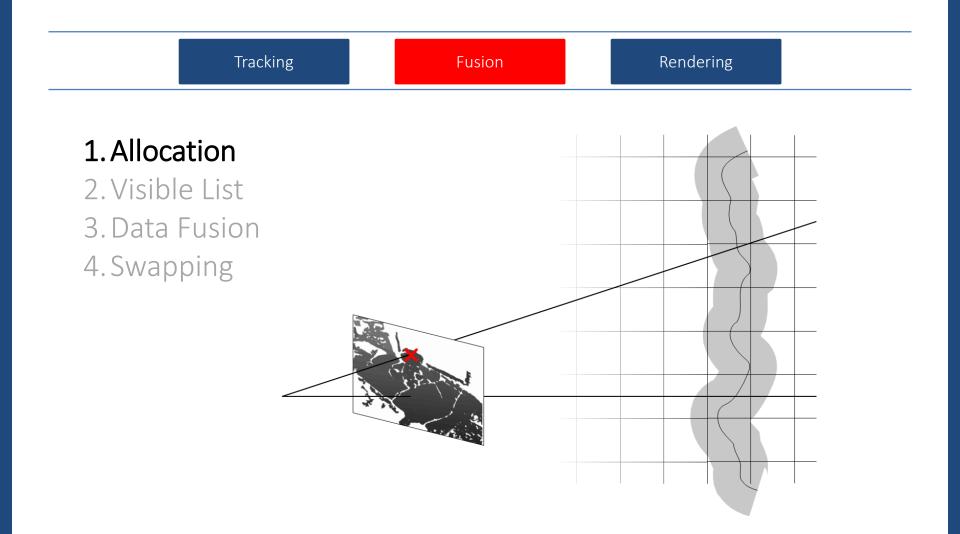
Map Representation

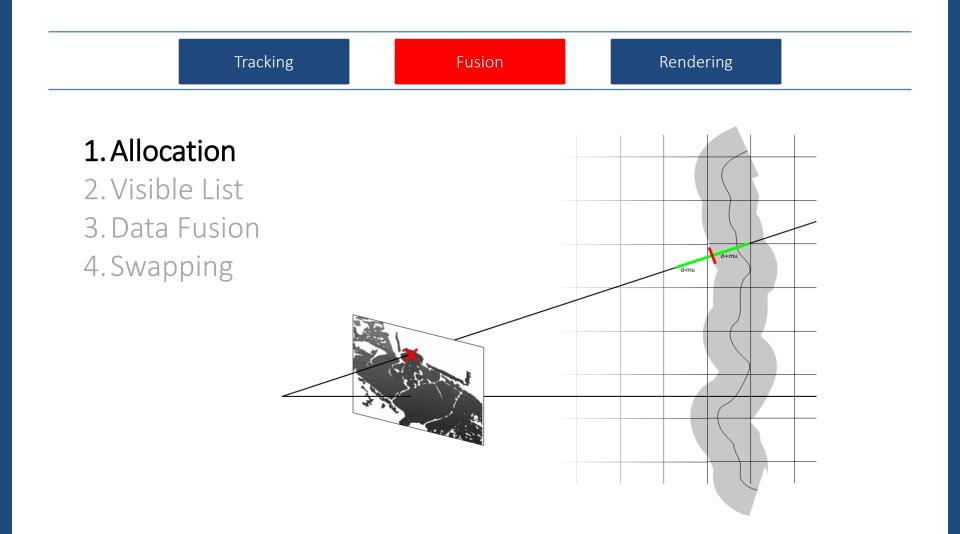


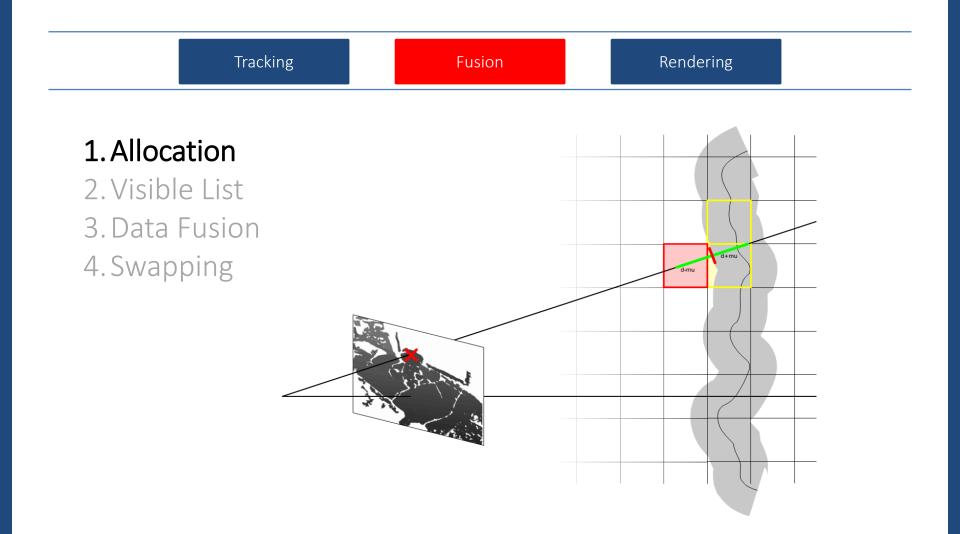
Main Processing Steps

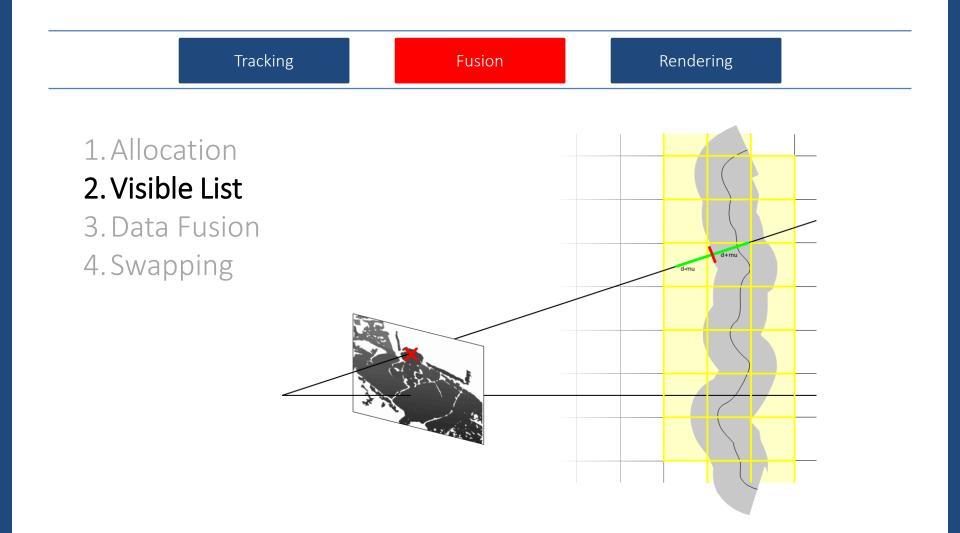


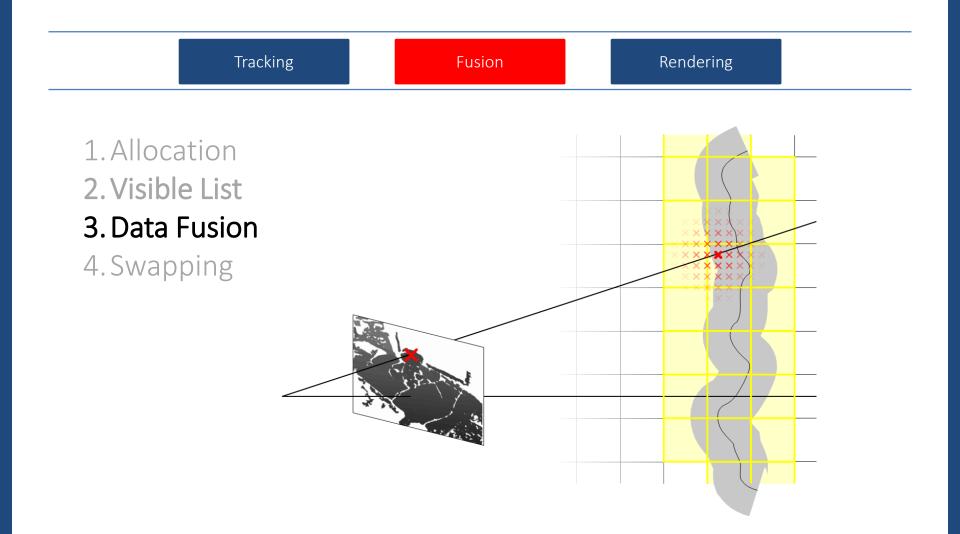


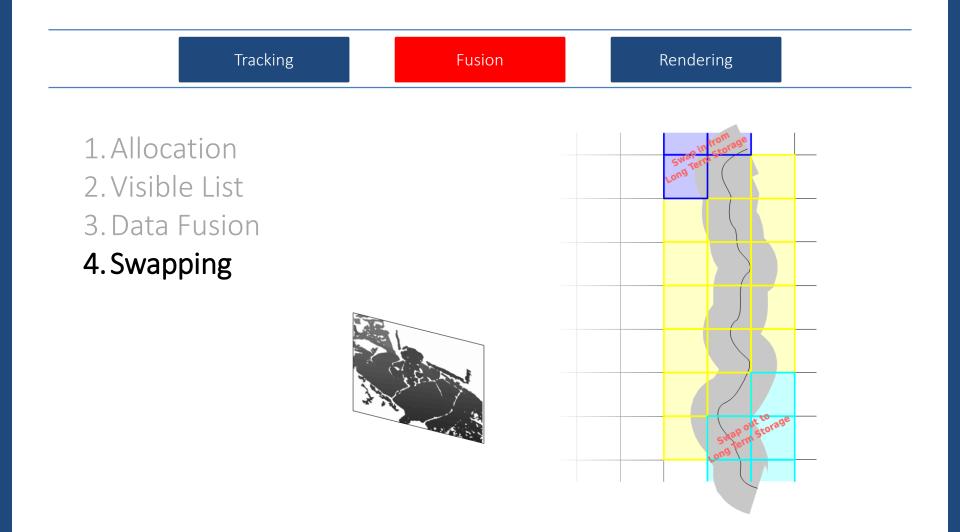


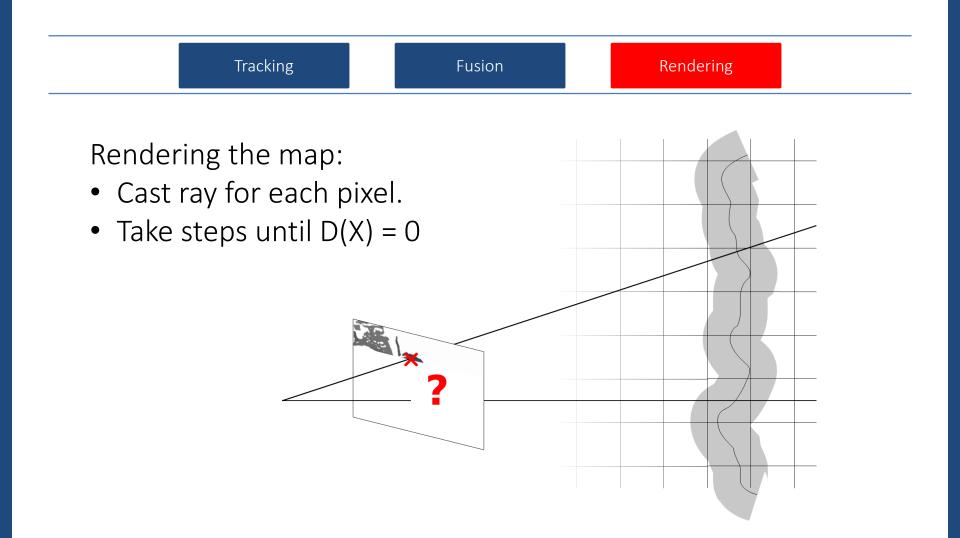


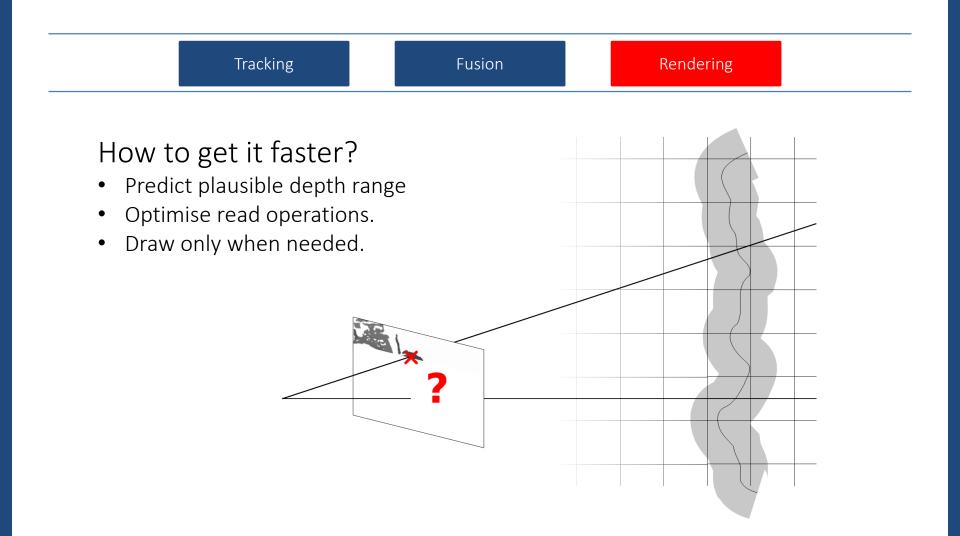












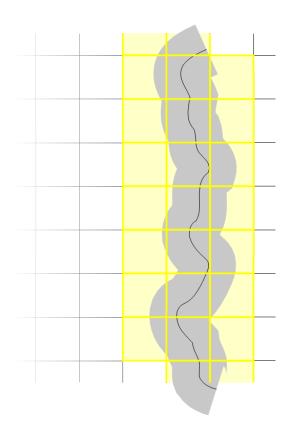
Tracking Fusion Rendering

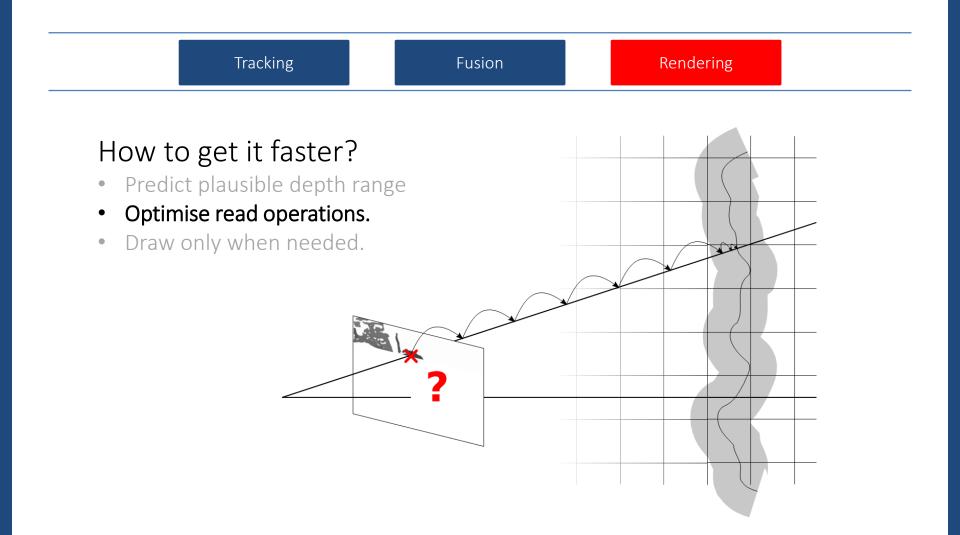
How to get it faster?

- Predict plausible depth range
- Optimise read operations.
- Draw only when needed.

The visible list allows us to predict depth range:

- Forward project visible box
- Bounding box rather than full polygon.
- Low resolution projection

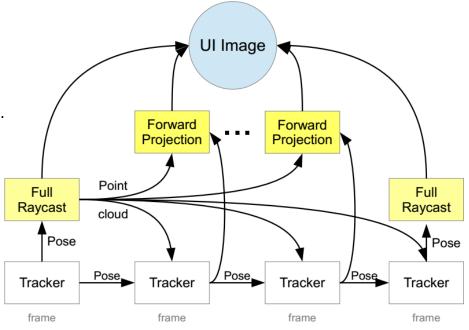


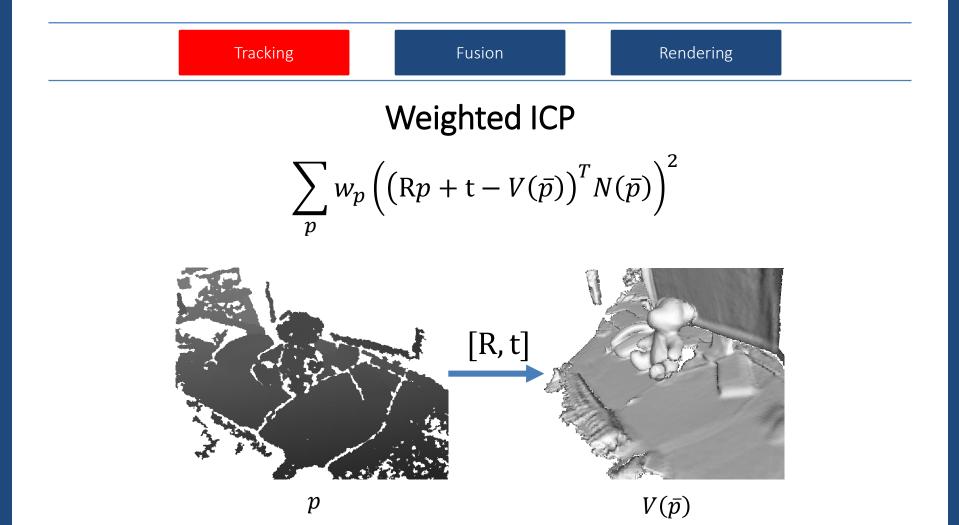


Tracking Fusion Rendering

How to get it faster?

- Predict plausible depth range
- Optimise read operations.
- Draw only when needed.
- Full raycast every few frames.
- Forward projection otherwise (much).





Runtime Experiments

Runtime on different devices:

teddy sequence, 640×480 pixels

				[Newcombe	[Nießner
Device	full	forward	none	et al., 2011]	et al., 2013]
Nvidia Titan X	1.91ms	1.74ms	1.38ms	26.15ms	25.87ms
Nvidia Tegra K1	36.53ms	31.38ms	26.79ms	-	-
Apple iPad Air 2	82.60ms	65.55ms	56.10ms	-	-
Intel Core i7-5960X	45.28ms	46.75ms	35.40ms	502.69ms	-

couch sequence, 320×240 pixels and IMU

				[Newcombe	[Nießner
Device	full	forward	none	et al., 2011]	et al., 2013]
Nvidia Titan X	1.17ms	1.10ms	0.87ms	19.34ms	15.18ms
Nvidia Tegra K1	25.58ms	21.04ms	19.38ms	-	-
Apple iPad Air 2	56.65ms	48.43ms	41.58ms	-	-
Intel Core i7-5960X	23.43ms	23.38ms	19.94ms	312.86ms	-

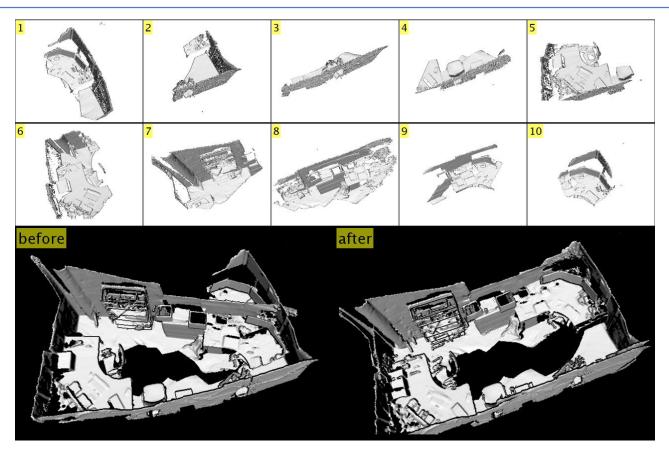
Is it perfect? – No 😳

Biggest problem: tracking drift

loop closure

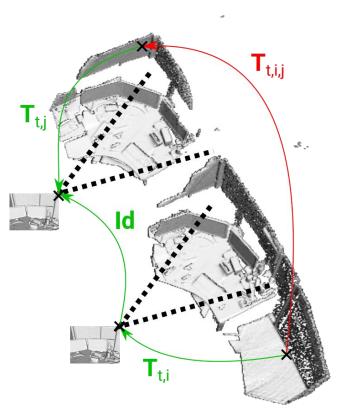
Loop Closure

Graph of Submaps



Relative Constraints

- Track the same image in multiple submaps i and j: poses $T_{t,i}$ and $T_{t,j}$.
- Pose between submaps: $\mathbf{T}_{t,i,j} = \mathbf{T}_{t,j}^{-1} \mathbf{T}_{t,i}$
- Robustly aggregate over time t to get final estimate $\boldsymbol{T}_{i,j}.$
- Stop tracking old scene on tracker failure.
- Also add constraints on relocalisation.

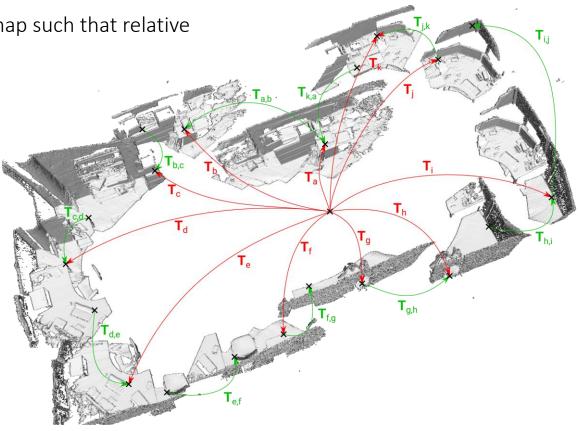


Pose Graph Optimisation

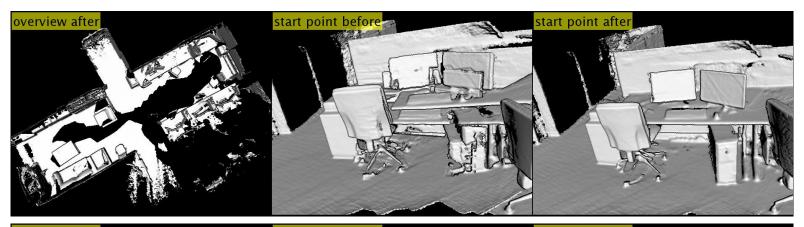
Find global pose for each submap such that relative constraints are satisfied.

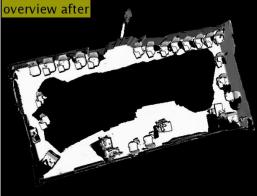
 $\sum_{i,j} \left| \mathbf{v}(\mathbf{P}_i, \mathbf{P}_j, \mathbf{T}_{i,j}) \right|$

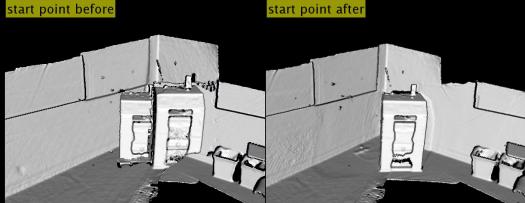
 $\label{eq:pose of submap} \begin{array}{l} P \text{ pose of submap} \\ T \text{ relative constraint} \\ v(T) = \left(q(T), t(T)\right)^T \end{array}$



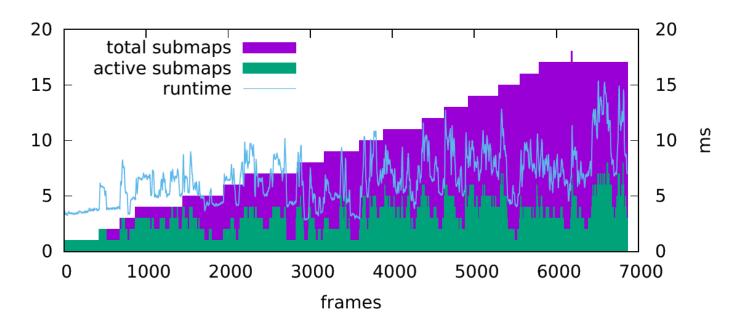
Result: Drift is compensated ...







... and processing is still quick



- Processing time: 7.1 8.5 ms per frame
- Remains constant

Depth cameras ...

- Take space.
- Use lots of power.
- Do not work outside.

• We can do better 😳

Live Meshing Demo

Underlying 3D Reconstruction

Underlying 3D Reconstruction

Reconstructions can be very big ...

How does it work?

Unicorn magic ... (and neural nets)

How do I use it?

- You'll need:
 - iOS 11.4+
 - Xcode 9.4.1 + ARKit 1.5+
 - Unity 2018.2+
 - iPhone 8 and higher.
- Sign-up and get username + SDK.
- Install the SDK in your app.
 - Standard drag and drop .framework on iOS.
 - Developer keys need to be specified in Info.plist.

How do I use it?

Init:

```
SixDegreesSDK_Initialize(EAGLContext*); // init with this
SixDegreesSDK_IsInitialized(); // wait until this returns true
```

Get pose:

```
float pose[16];
SixDegreesSDK_GetPose(pose, 16); // get the pose here!
```

Get mesh:

```
int blockBufferSize, vertexBufferSize, faceBufferSize;
SixDegreesSDK_GetMeshBlockInfo(&blockBufferSize, &vertexBufferSize, &faceBufferSize); // gets the live mesh
info
```

```
int blockBuffer[blockBufferSize];
float vertexBuffer[vertexBufferSize];
int faceBuffer[faceBufferSize];
SixDegreesSDK_GetMeshBlocks(blockBuffer, vertexBuffer, faceBuffer, blockBufferSize, vertexBufferSize,
faceBufferSize); // gets the live mesh
```

Conclusion

