

The 42nd International Conference and Exhibition
on Computer Graphics and Interactive Techniques

Optimizing PBR

Renaldas Zioma
Unity Technologies

Talk Overview
• PBR challenges on Mobile

• What hardware are we optimizing for?

• Faster BRDF

• Linear/Gamma

• Environment Reflections

PBR challenges on Mobile
• Performance

• Many GPUs, many architectures, many peculiarities

• Gamma/Linear workflows

• Lack of high quality texture compression formats

• ASTC - light at the end of the tunnel

PBR challenges on Mobile
• Shader compilers are still not as good as on PC

• Scalar (more recent) vs vector pipeline

• texCUBElod

• FP32 vs FP16 precision

• Lots of shader variations!

Optimization Target

based on # of apps running Unity

Performance

• Huge performance leap in every generation

 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops
0.2 ~ 1 GP/s

SGX535

iPad, iPhone4

Tegra2 Adreno2xx

 
Mali400 MPx

SGS3 (I9300)
SGS2 (I9100)16 GFlops

2 ~ 3 GP/s

SGX54x

iPad2/3, iPhone4s, iPhone5

Tegra3 Adreno305

SGS4 mini (I9195)

100 GFlops
4 GP/s

G6x30

iPadAir, iPhone5s

Tegra4 Adreno3x0

Nexus 4, Nexus 5

MaliT628

250 GFlops
4 ~ 8 GP/s

G6x50

iPadAir2, iPhone6

K1, X1

Nexus 9, Shield Tablet

Adreno420 MaliT760

SGS6

 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops
0.2 ~ 1 GP/s

SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

  
 

Mali400 MPx 19%
16 GFlops
2 ~ 3 GP/s

SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

100 GFlops
4 GP/s

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

250 GFlops
4 ~ 8 GP/s

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Market Share

• Green - GPU with significant market share
• TIP: new devices >10x faster than what most people have in their pocket!

PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 
 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimization Tiers
Low-end Tier

Mid Tier

High-end Tier

• iOS, Android and Windows combined

• Ratio between math (ALU) and fetching texture (TEX)

• Scalar or vector architecture

• Precision

Important GPU characteristics for PBR

• Unofficial numbers, some based on our measurements. Numbers might be wrong! Numbers are peak values.

• TEX - bilinear texture fetch

• FP32-FP16 - supports both precision, likely to be faster in FP16

• FP16 * - definitely faster in FP16, but certain complex operations (EXP, LOG, etc) will be executed in FP32 anyway

• wide vector - FP16 are likely to be executed as 8-way vectors

 PowerVR NVIDIA Qualcomm ARM

16
GFlops

SGX54x 16 FLOPs / 1 TEX
FP16 *
vector

Adreno3xx
16? FLOPs / 1 TEX

FP32/FP16
scalar

Mali400 MPx 16 FLOPs / 1 TEX
FP16 only

vector

70
GFlops

SGX554 32 FLOPs / 1 TEX
FP16 *
vector

MaliT604 16* FLOPs / 1 TEX
FP32-FP16
wide vector

>100
GFlops

G6x30 48 FLOPs / 1 TEX
FP32-FP16

scalar

K1 48 FLOPs / 1 TEX
FP32 only

scalar

MaliT628 32* FLOPs / 1 TEX
FP32-FP16
wide vector

>200
GFlops

G6x50 64 FLOPs / 1 TEX
FP32-FP16

scalar

X1 64/128 FLOPs / 1 TEX
FP32-FP16

scalar

Adreno4x0 32 FLOPs / 1 TEX
FP32-FP16

scalar

MaliT760 >68 FLOPs / 1 TEX
FP32-FP16
wide vector

Important GPU characteristics for PBR
• FP16 (“FP16 only” & “FP16 *”)

• PBS is more prone to artifacts @ low precision

• Check your epsilons (1e-4 is OK, 1e-5 is not!)

• Sometimes need additional clamping due to precision overflows

• Vector pipeline might need different optimizations

• ALU/TEX differs a lot for high-end vs low-end GPUs

PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for High-end tier

High-end Tier

Optimizing BRDF for Mobile

• Specular micro-facet equation

• D: Distribution Term

• GGX vs Normalized Blinn-Phong vs SG approx.

• V: Visibility term

• F: Fresnel term

GGX vs BlinnPhong
• GGX - more simple ops (ADD, MUL), 

but only 1 complex (RCP)

• Normalized Phong - several complex ops 
(RCP, EXP, LOG)

• even SG approximation (RCP, EXP)

Simple vs Complex op
• PowerVR G6x00 asm 

(Phong example)

• Can do many ops / cycle, 
but only 1 complex!

• Most other architectures 
complex op = latency

23 : fmad ft0, i0, r22, r9
 fmul ft1, c71, r13
 pck.f32 ft2
 tstgz.f32 ftt, _, ft0
 mov i0.e0.e1.e2.e3, i3, ftt, ft0, ft1

24 : flog i0, i0.abs

25 : fmul ft0, i1, i2
 fmul ft1, i0, i3
 mov i3, ft0;
 mov i0, ft1;

26 : fexp i0, i0

27 : fadd ft0, i3, r23
 fmul ft1, i0, r23
 mov i2, ft0;
 mov i1, ft1;

cycle

another cycle

Geometric / Visibility term
• Smith adopted for GGX

• Kelemen and Szirmay-Kalos (KSK)

• does not take roughness into account!

• Fix for KSK (J. Hable)

• Dependent only on L•H and Roughness!

Fresnel term
• Approximation suggested by C. Schüler:

• Dielectrics - OK 
(reflectance 0.02 ~ 0.15)

• Conductors aka Metals - average value OK 
(reflectance 0.7 ~ 1.0)

• has wrong shape, but Fresnel is almost flat for Metals anyway

• Goes to +Infinity instead of 1

Fresnel term

• Will not use Schüler approximation directly

• Just inspiration that specColor can be post multiplied

• Great for scalar pipeline!

V*F together
• Modified KSK and Schlick

Fresnel depend on L•H

• Fuse them together

• Cheaper approximation?

L•H rou
gh

ne
ssπ/2

1.0

Approximate V*F

• Not an algebraic simplification

• Fitting similar curve

L•H rou
gh

ne
ssπ/2

1.0

Approximation Results
Original (Modified KSK, Fresnel) Our approximation

Errors

L•H

ro
ug

hn
es

s

0π/2L•H

ro
ug

hn
es

s

0π/2 L•H

ro
ug

hn
es

s

0π/2

L•H rou
gh

ne
ss

L•H rou
gh

ne
ss

Approximate V*F
• Good for Dielectrics, but diverge for Metals

Original (Modified KSK, Fresnel) Our approximation

Approximate V*F
• Can be improved with couple more ops, 

but does not matter in practice
Original (Modified KSK, Fresnel) Our approximation*

Implicit+Fresnel Smith+Fresnel Our Approximation

Complete lighting

V*F terms only

Plastic

Metal

Plastic

Metal

Comparison of Visibility Terms

Final Specular BRDF

• Just 1 division

• Good for scalar pipeline

Environment BRDF

• B. Karis approximation based on D. Lazarov work

• Just refitted with simpler function

Environment BRDF

Putting everything together

Putting everything together
ImgTech G6x00 

(scalar)
ImgTech
SGX554 
(vector)

QCOM 
Adreno305 

(scalar)

ARM 
MaliT760 
(vector)

ARM Mali400MP4 
(vector)

old-school-non-PBR 
unnormalized BinnPhong 141% 172% 154% 140%

normalized BlinnPhong,
Smith 

(baseline)
100% 100% 100% 100% 100%

proposed version 
GGX 114% 126% 118% 111% 271%

• Percentages are used to make test runs on different screen resolutions easily comparable.
• Measured with a scene consisting of 50K vertices fully covering screen with >3x overdraw rate.

PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for Mid tier

Mid Tier

Per-vertex lighting
• Medium-end hardware:

• Lower bandwidth, GFLOPs are meh

• Diffuse and ambient per-vertex

• Specular per-pixel

• Environment reflection vector per-vertex

• Specular in Tangent space - saves matrix-vector transformation

PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for Low-end
Low-end Tier

LUT
• Low-end hardware:

• Low ALU/TEX ratio

• Specular intensity in LUT

• <N•H, Roughness>

• Remember implicit Geometric term!

• I = BRDF * N•L

• N•H is cosine - highlights are really crammed

LUT specular
• Store 1/16 intensity in LUT

• R•L instead on N•H saves couple of ops

• suggested by B.Karis

• Warp LUT /w R•L4 to get more space for
highlights

• PBR challenges on Mobile

• What hardware are we optimizing for?

• Faster BRDF

• Linear/Gamma

• Environment Reflections

Linear/Gamma
• Linear lighting

• hard on older GPUs

• has additional cost

• Gamma and Linear will never look the same, 
but we can aim for:

• consistent base light intensity

• consistent highlight size

Hack for Gamma to “match” Linear
• Approximate gamma with 2.0

• “Fixup” just specular intensity:

• Keep parameters (Roughness) for specular part of equation in Linear

• Evaluate specular intensity as in Linear space

• Convert resulting specular intensity to sRGB space before applying
colors: 
 = sqrt (specIntensity_Linear) * specColor_sRGB

Pros of Gamma hack
• No need to uncompress colors/textures from sRGB to Linear

• Roughness is Linear already

• usually stored in Alpha channel

• Potentially long latency op (INVSQRT) is NOT at the end of
the shader

• cost can be hidden by other ops

Gamma vs Linear

Environment reflections
• texCUBElod can be really expensive sometimes

• G6xx0 - high-end mobile GPU!

• optional extension on ES2.0

• G6xx0: use dynamic branches to pick 2 closest mips and lerp

• slightly faster!

texCUBElod
• Lerp 2 extreme mips

• ugly, but fast

• 3-way lerp: 
 hardcoded highest mip# 
 middle mip# 
 2nd order SH

• for middle you can cut mip levels (/w extension) and hardcode to a very large
number

Thanks
John Hable

Morten Mikkelsen

Florian Penzkofer

Alexey Orlov

Dominykas Kiauleikis

Sakari Pitkänen

References
1. Morten Mikkelsen, “Microfacet Based Bidirectional Reflectance Distribution Function”, 2009

2. John Hable, “Optimizing GGX Shaders with dot(L,H)”, 2014, online

3. Christian Schüler, “An Efficient and Physically Plausible Real-Time Shading Model.” ShaderX 7,
Chapter 2.5, pp. 175 – 187

4. Brian Karis, “Physically Based Shading on Mobile”, 2014, online

5. Sébastien Lagarde, “Spherical Gaussian approximation for Blinn-Phong, Phong and Fresnel”,
2012, online

6. Kelemen and Szirmay- Kalos, “A Microfacet Based Coupled Specular- Matte BRDF Model with
Importance Sampling”, Eurographics 2001

7. Robert Cook and Kenneth Torrance, “A reflectance model for computer graphics”

Bonus Slides

 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops
0.2 ~ 1 GP/s

SGX535

iPad, iPhone4

Tegra2 Adreno2xx

Mali400 MPx

SGS3 (I9300)
SGS2 (I9100)

16 GFlops
2 ~ 3 GP/s

SGX54x

iPad2/3, iPhone4s, iPhone5

Tegra3 Adreno305

SGS4 mini (I9195)

100 GFlops
4 GP/s

G6x30

iPadAir, iPhone5s

Tegra4 Adreno3x0

Nexus 4, Nexus 5

MaliT628

250 GFlops
4 ~ 8 GP/s

G6x50

iPadAir2, iPhone6

K1, X1

Nexus 9, Shield Tablet

Adreno420 MaliT760

SGS6

OpenGL ES3.0

• Green - GPU with ES3.0 support
• TIP: you can’t just use ES2.0 / ES3.0 to determine performance of GPU

 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops
0.2 ~ 1 GP/s

SGX535 3.5% Tegra2 1.0% Adreno2xx 9%
Mali400 MPx 19%

16 GFlops
2 ~ 3 GP/s

SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

100 GFlops
4 GP/s

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

250 GFlops
4 ~ 8 GP/s

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Low-end with large share

• Yellow - Low-end with large share, but most in APAC and Latin America
• And you still need to support iPhone4

Textures
• Lack of uncorrelated 4 channel compression

• Consider Roughness in a separate texture

• Pairing Roughness with Specular/Metal instead of
Albedo or Normals since former is low frequency
& low variance data

Textures
• Lack of HDR compression

• IBL, Lightmaps: RGB*2 instead of RGBm/HDR

• IBL: uncompressed HDR cubemaps

• An awful tradeoff :(

