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Talk Overview
• PBR challenges on Mobile 

• What hardware are we optimizing for? 

• Faster BRDF 

• Linear/Gamma 

• Environment Reflections



PBR challenges on Mobile
• Performance 

• Many GPUs, many architectures, many peculiarities 

• Gamma/Linear workflows 

• Lack of high quality texture compression formats 

• ASTC - light at the end of the tunnel



PBR challenges on Mobile
• Shader compilers are still not as good as on PC 

• Scalar (more recent) vs vector pipeline 

• texCUBElod  

• FP32 vs FP16 precision 

• Lots of shader variations!



Optimization Target

based on # of apps running Unity



Performance

• Huge performance leap in every generation
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Nexus 4, Nexus 5

MaliT628

250 GFlops 
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iPadAir2, iPhone6
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Nexus 9, Shield Tablet

Adreno420 MaliT760 

SGS6



 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops 
0.2 ~ 1 GP/s

SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

  
 

Mali400 MPx 19%
16 GFlops 
2 ~ 3 GP/s

SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

100 GFlops 
4 GP/s

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

250 GFlops 
4 ~ 8 GP/s

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Market Share

• Green - GPU with significant market share 
• TIP: new devices >10x faster than what most people have in their pocket!



PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 
 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimization Tiers
Low-end Tier

Mid Tier

High-end Tier

• iOS, Android and Windows combined



• Ratio between math (ALU) and fetching texture (TEX) 

• Scalar or vector architecture 

• Precision

Important GPU characteristics for PBR



• Unofficial numbers, some based on our measurements. Numbers might be wrong! Numbers are peak values. 

• TEX - bilinear texture fetch 

• FP32-FP16 - supports both precision, likely to be faster in FP16 

• FP16 * - definitely faster in FP16, but certain complex operations (EXP, LOG, etc) will be executed in FP32 anyway 

• wide vector - FP16 are likely to be executed as 8-way vectors

 PowerVR NVIDIA Qualcomm ARM

16 
GFlops

SGX54x 16 FLOPs / 1 TEX 
FP16 * 
vector

Adreno3xx
16? FLOPs / 1 TEX 

FP32/FP16 
scalar

Mali400 MPx 16 FLOPs / 1 TEX 
FP16 only 

vector

70 
GFlops

SGX554 32 FLOPs / 1 TEX 
FP16 * 
vector

MaliT604 16* FLOPs / 1 TEX 
FP32-FP16 
wide vector

>100 
GFlops

G6x30 48 FLOPs / 1 TEX 
FP32-FP16 

scalar

K1 48 FLOPs / 1 TEX 
FP32 only 

scalar

MaliT628 32* FLOPs / 1 TEX 
FP32-FP16 
wide vector

>200 
GFlops

G6x50 64 FLOPs / 1 TEX 
FP32-FP16 

scalar

X1 64/128 FLOPs / 1 TEX 
FP32-FP16 

scalar

Adreno4x0 32 FLOPs / 1 TEX 
FP32-FP16 

scalar

MaliT760 >68 FLOPs / 1 TEX 
FP32-FP16 
wide vector



Important GPU characteristics for PBR
• FP16 (“FP16 only” & “FP16 *”) 

• PBS is more prone to artifacts @ low precision 

• Check your epsilons (1e-4 is OK, 1e-5 is not!) 

• Sometimes need additional clamping due to precision overflows 

• Vector pipeline might need different optimizations 

• ALU/TEX differs a lot for high-end vs low-end GPUs



PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for High-end tier

High-end Tier



Optimizing BRDF for Mobile

• Specular micro-facet equation 

• D: Distribution Term 

• GGX vs Normalized Blinn-Phong vs SG approx. 

• V: Visibility term 

• F: Fresnel term



GGX vs BlinnPhong
• GGX - more simple ops (ADD, MUL), 

but only 1 complex (RCP) 

• Normalized Phong - several complex ops 
(RCP, EXP, LOG) 

• even SG approximation (RCP, EXP)



Simple vs Complex op
• PowerVR G6x00 asm 

(Phong example) 

• Can do many ops / cycle, 
but only 1 complex! 

• Most other architectures 
complex op = latency

23   : fmad ft0, i0, r22, r9 
       fmul ft1, c71, r13 
       pck.f32 ft2 
       tstgz.f32 ftt, _, ft0 
       mov i0.e0.e1.e2.e3, i3, ftt, ft0, ft1 

24   : flog i0, i0.abs 

25   : fmul ft0, i1, i2 
       fmul ft1, i0, i3 
       mov i3, ft0; 
       mov i0, ft1; 

26   : fexp i0, i0 

27   : fadd ft0, i3, r23 
       fmul ft1, i0, r23 
       mov i2, ft0; 
       mov i1, ft1; 

cycle

another cycle



Geometric / Visibility term
• Smith adopted for GGX 

• Kelemen and Szirmay-Kalos (KSK) 

• does not take roughness into account! 

• Fix for KSK (J. Hable) 

• Dependent only on L•H and Roughness!



Fresnel term
• Approximation suggested by C. Schüler: 

• Dielectrics - OK 
(reflectance 0.02 ~ 0.15) 

• Conductors aka Metals - average value OK 
(reflectance 0.7 ~ 1.0) 

• has wrong shape, but Fresnel is almost flat for Metals anyway 

• Goes to +Infinity instead of 1



Fresnel term

• Will not use Schüler approximation directly 

• Just inspiration that specColor can be post multiplied  

• Great for scalar pipeline!



V*F together
• Modified KSK and Schlick 

Fresnel depend on L•H

• Fuse them together 

• Cheaper approximation?
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Approximate V*F

• Not an algebraic simplification  

• Fitting similar curve
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Approximation Results
Original (Modified KSK, Fresnel) Our approximation
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Approximate V*F
• Good for Dielectrics, but diverge for Metals

Original (Modified KSK, Fresnel) Our approximation



Approximate V*F
• Can be improved with couple more ops, 

but does not matter in practice
Original (Modified KSK, Fresnel) Our approximation*



Implicit+Fresnel Smith+Fresnel Our Approximation

Complete lighting

V*F terms only

Plastic

Metal

Plastic

Metal

Comparison of Visibility Terms



Final Specular BRDF

• Just 1 division 

• Good for scalar pipeline



Environment BRDF

• B. Karis approximation based on D. Lazarov work 

• Just refitted with simpler function



Environment BRDF



Putting everything together



Putting everything together
ImgTech G6x00 

(scalar)
ImgTech 
SGX554 
(vector)

QCOM 
Adreno305 

(scalar)

ARM 
MaliT760 
(vector)

ARM Mali400MP4 
(vector)

old-school-non-PBR 
unnormalized BinnPhong 141% 172% 154% 140%

normalized BlinnPhong, 
Smith 

(baseline)
100% 100% 100% 100% 100%

proposed version 
GGX 114% 126% 118% 111% 271%

• Percentages are used to make test runs on different screen resolutions easily comparable. 
• Measured with a scene consisting of 50K vertices fully covering screen with >3x overdraw rate.



PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for Mid tier

Mid Tier



Per-vertex lighting
• Medium-end hardware: 

• Lower bandwidth, GFLOPs are meh 

• Diffuse and ambient per-vertex 

• Specular per-pixel 

• Environment reflection vector per-vertex 

• Specular in Tangent space - saves matrix-vector transformation



PowerVR NVIDIA Qualcomm ARM
SGX535 3.5% Tegra2 1.0% Adreno2xx 9%

 

Mali400 MPx 19%SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Optimizing for Low-end
Low-end Tier



LUT
• Low-end hardware: 

• Low ALU/TEX ratio 

• Specular intensity in LUT 

• <N•H, Roughness> 

• Remember implicit Geometric term! 

• I = BRDF * N•L 

• N•H is cosine - highlights are really crammed



LUT specular
• Store 1/16 intensity in LUT 

• R•L instead on N•H saves couple of ops 

• suggested by B.Karis 

• Warp LUT /w R•L4 to get more space for 
highlights



• PBR challenges on Mobile 

• What hardware are we optimizing for? 

• Faster BRDF 

• Linear/Gamma

• Environment Reflections



Linear/Gamma
• Linear lighting 

• hard on older GPUs 

• has additional cost 

• Gamma and Linear will never look the same, 
but we can aim for: 

• consistent base light intensity 

• consistent highlight size



Hack for Gamma to “match” Linear
• Approximate gamma with 2.0 

• “Fixup” just specular intensity: 

• Keep parameters (Roughness) for specular part of equation in Linear 

• Evaluate specular intensity as in Linear space 

• Convert resulting specular intensity to sRGB space before applying 
colors: 
    = sqrt (specIntensity_Linear) * specColor_sRGB



Pros of Gamma hack
• No need to uncompress colors/textures from sRGB to Linear 

• Roughness is Linear already 

• usually stored in Alpha channel 

• Potentially long latency op (INVSQRT) is NOT at the end of 
the shader 

• cost can be hidden by other ops



Gamma vs Linear



Environment reflections 
• texCUBElod can be really expensive sometimes 

• G6xx0 - high-end mobile GPU! 

• optional extension on ES2.0 

• G6xx0: use dynamic branches to pick 2 closest mips and lerp 

• slightly faster!



texCUBElod
• Lerp 2 extreme mips 

• ugly, but fast 

• 3-way lerp: 
   hardcoded highest mip# 
   middle mip# 
   2nd order SH 

• for middle you can cut mip levels (/w extension) and hardcode to a very large 
number
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OpenGL ES3.0

• Green - GPU with ES3.0 support 
• TIP: you can’t just use ES2.0 / ES3.0 to determine performance of GPU



 PowerVR NVIDIA Qualcomm ARM

4 ~ 8 GFlops 
0.2 ~ 1 GP/s

SGX535 3.5% Tegra2 1.0% Adreno2xx 9%
Mali400 MPx 19%

16 GFlops 
2 ~ 3 GP/s

SGX54x 15.4% Tegra3 0.9% Adreno305 7.1%

100 GFlops 
4 GP/s

G6x30 6.0% Tegra4 0.0% Adreno3x0 10.3% MaliT628 0.5%

250 GFlops 
4 ~ 8 GP/s

G6x50 0.3% K1, X1 0.0% Adreno420 0.1% MaliT760 0.0%

Low-end with large share

• Yellow - Low-end with large share, but most in APAC and Latin America 
• And you still need to support iPhone4



Textures
• Lack of uncorrelated 4 channel compression 

• Consider Roughness in a separate texture 

• Pairing Roughness with Specular/Metal instead of 
Albedo or Normals since former is low frequency  
& low variance data



Textures
• Lack of HDR compression 

• IBL, Lightmaps: RGB*2 instead of RGBm/HDR 

• IBL: uncompressed HDR cubemaps 

• An awful tradeoff :(


