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• Efficient on-chip rendering 

• Post-processing 

– Bloom 

– Blur filters 

Agenda 



• Extensions 

– Framebuffer fetch 

– Pixel Local Storage 

 

• Why extensions? 

– Surely mobile GPUs are already bandwidth-efficient? 

Efficient on-chip rendering 



• Read the current fragment’s previous color value 

• ARM also supports reading the previous depth and stencil 

values of the current fragment 

 

• Useful for 

– Programmable blending 

– Programmable depth/stencil testing 

Framebuffer fetch 



• Per-pixel storage that is persistent throughout the lifetime 

of the frame 

– Read/write access 

– Storage stays on-chip 

– Storage layout declared per fragment shader invocation – does 

not depend on framebuffer format 

• Useful for 

– Deferred shading 

– Order Independent Transparency [1] 

– Volume rendering 

Pixel Local Storage (PLS) 



Pixel Local Storage (PLS) 

• Rendering pipeline 

changes slightly when 

PLS is enabled 

– Writing to PLS bypasses 

blending 

• Note 

– Fragment order 

– PLS and color share the 

same memory location 
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Post-processing 



• High-end mobile devices typically have small displays 

with massive resolutions 

• Rendering at native resolution is often out of the question, 

especially if you add post-processing to the mix 

 

• Solution: mixed resolution rendering 

– Go as low as you can without sacrificing quality, and then upscale 

Post-processing 



Mobile post-processing 

On-chip 

• Color Grading 

• Tonemapping 

Off-chip 

• Anti-aliasing 

• Bloom 

• Depth of Field 

• Screen Space Ambient 

Occlusion 

• Screen Space Reflections 



• Doesn’t have to be physically correct 

• Wide + thin 

 

Bloom 

Threshold

Blur

Composite



• What makes a good blur filter? 

• Goal: 

– High quality 

– Stable 

– High performance 

Blur 



• 5x5 box blur = 25 samples 

• Separate the blurs 

– 5 + 5 = 10 samples 
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Gaussian blur 

• Convolve a gaussian 

function over the image 

• Separable just like the 

box filter 

 



Linear sampling optimization [2] 

• Reduce number of 

texture lookups by 

exploiting the HW texture 

unit 

– Modify sample offsets and 

gaussian weights 

• Get 9x9 at similar cost as 

5x5 
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• Gets increasingly complicated when using separable 

kernels 
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Kawase blur [3] 



Kawase blur 



“Dual filtering” 

Downsample filter 
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“Dual filtering” 



Comparing filters 



• 97x97 blur 

• Gaussian used as reference 

• Kawase 

– First downsample to 1/16th resolution 

– Setup with 0, 1, 2, 3, 4, 4, 5, 6, 7 distances passes 

• “Dual filtering” setup with 8 passes 

• Naïve method which relies on glGenerateMipmap 

 

 

Comparison setup 



Input Reference Dual Kawase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSNR: 

 

 

 

 

 

 

 

 

 

 

 

 

49.78 dB 

 

 

 

 

 

 

 

 

 

 

 

 

50.02 dB 



Stability comparison 



Input Reference Dual Kawase Naive 

 

 

 

 

 

 

 



Input Reference Dual Kawase Naive 

 

 

 

 

 

 

 



Input Reference Dual Kawase Naive 

 

 

 

 

 

 

 



Performance comparison 
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• On-chip rendering 

– Please use the extensions 

 

• Bloom 

– Multi-pass mixed resolution 

– “Dual filter” blur  

 

• Next steps 

– Work on getting on-chip rendering into future core APIs 

– Look into alternative data flows for doing blurs 

Summary 



Thanks! 

• Questions? 

– Marius.Bjorge@arm.com 
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