

Bandwidth-Efficient

Rendering

Marius Bjørge
ARM

• Efficient on-chip rendering

• Post-processing

– Bloom

– Blur filters

Agenda

• Extensions

– Framebuffer fetch

– Pixel Local Storage

• Why extensions?

– Surely mobile GPUs are already bandwidth-efficient?

Efficient on-chip rendering

• Read the current fragment’s previous color value

• ARM also supports reading the previous depth and stencil

values of the current fragment

• Useful for

– Programmable blending

– Programmable depth/stencil testing

Framebuffer fetch

• Per-pixel storage that is persistent throughout the lifetime

of the frame

– Read/write access

– Storage stays on-chip

– Storage layout declared per fragment shader invocation – does

not depend on framebuffer format

• Useful for

– Deferred shading

– Order Independent Transparency [1]

– Volume rendering

Pixel Local Storage (PLS)

Pixel Local Storage (PLS)

• Rendering pipeline

changes slightly when

PLS is enabled

– Writing to PLS bypasses

blending

• Note

– Fragment order

– PLS and color share the

same memory location

Pixel Local Storage (PLS)
OIT phaseOpaque phase

Fill gbuffer
Light

accumulation

Pixel Local Storage

Init OIT

R32UI R32UI R32UI R32UI

Transparent
rendering

Resolve

ColorRGB10A2 RGB10A2 RG16F RG16F

At this point we change
the layout of the PLS

Post-processing

• High-end mobile devices typically have small displays

with massive resolutions

• Rendering at native resolution is often out of the question,

especially if you add post-processing to the mix

• Solution: mixed resolution rendering

– Go as low as you can without sacrificing quality, and then upscale

Post-processing

Mobile post-processing

On-chip

• Color Grading

• Tonemapping

Off-chip

• Anti-aliasing

• Bloom

• Depth of Field

• Screen Space Ambient

Occlusion

• Screen Space Reflections

• Doesn’t have to be physically correct

• Wide + thin

Bloom

Threshold

Blur

Composite

• What makes a good blur filter?

• Goal:

– High quality

– Stable

– High performance

Blur

• 5x5 box blur = 25 samples

• Separate the blurs

– 5 + 5 = 10 samples

Box blur
Horizontal

Vertical

Gaussian blur

• Convolve a gaussian

function over the image

• Separable just like the

box filter

Linear sampling optimization [2]

• Reduce number of

texture lookups by

exploiting the HW texture

unit

– Modify sample offsets and

gaussian weights

• Get 9x9 at similar cost as

5x5

Mixing resolutions

Down

Up

Down

Up

• Gets increasingly complicated when using separable

kernels

Mixing resolutions

Down

Horz

Vert

Down

Horz

Vert

Up

Horz

Vert

Up

Kawase blur [3]

Kawase blur

“Dual filtering”

Downsample filter

Upsample filter

1/2

1/8

1/8

1/8

1/8

“Dual filtering”

Comparing filters

• 97x97 blur

• Gaussian used as reference

• Kawase

– First downsample to 1/16th resolution

– Setup with 0, 1, 2, 3, 4, 4, 5, 6, 7 distances passes

• “Dual filtering” setup with 8 passes

• Naïve method which relies on glGenerateMipmap

Comparison setup

Input Reference Dual Kawase

PSNR:

49.78 dB

50.02 dB

Stability comparison

Input Reference Dual Kawase Naive

Input Reference Dual Kawase Naive

Input Reference Dual Kawase Naive

Performance comparison

41.9

21.4
23.5

4.5
2.8

19.2

9.9
7.0

2.8 1.7

0

5

10

15

20

25

30

35

40

45

Gaussian Box 5x5 gaussian Kawase Dual

1080p

720p

Performance (ms)

Tested on a Mali-T760 MP8

98%

10% 12%
5% 2% 3% 4% 2%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Linear sampling 5x5 gaussian
reduction

Kawase Dual

Reads

Writes

Bandwidth

2% 70% 63% 71%
0%

10%

20%

30%

40%

50%

60%

70%

80%

Linear sampling 5x5 gaussian
reduction

Kawase Dual

Hit

Cache utilization

• On-chip rendering

– Please use the extensions

• Bloom

– Multi-pass mixed resolution

– “Dual filter” blur

• Next steps

– Work on getting on-chip rendering into future core APIs

– Look into alternative data flows for doing blurs

Summary

Thanks!

• Questions?

– Marius.Bjorge@arm.com

• References

1. Efficient Rendering with Tile Local Storage [Siggraph 2014]

2. http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-

linear-sampling/

3. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L

[GDC 2003]

mailto:Marius.Bjorge@arm.com
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

