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Abstract

Mobile systems are increasing in graphical capability despite the constraints of embed-
ded platforms. Making the most of this performance requires careful consideration, and
different techniques than may be familiar to desktop developers. This course highlights
the differences of embedded graphics systems and ways to leverage them.

Course Summary

Desktop graphics cards have achieved very high performance levels, but at the cost of
size, power consumption and heat. These issues mean that embedded GPUs must take
a very different approach to achieve the performance that is expected of a computing
device by the modern consumer. The design decisions made by embedded GPU designers
influence the best practices for the mobile graphics developer. For example, tile-based
renderers have high local frame-buffer bandwidth, at the cost of suffering performance
degradations as geometry counts increase. The modern mobile device contains a very
high-quality screen attached to powerful but efficient rendering hardware; the onus is on
the developer to make the most of the display while keeping the efficiency of the system
within the constraints imposed by battery life and heat dissipation.

By considering the bandwidth requirements of common rendering operations, the flow
of data through the GPU, computational limits of embedded devices and the optimisations
typically performed by mobile rendering architectures, this course discusses the pitfalls of
following a conventional desktop rendering work-flow, and offers suggestions for optimising
rendering efficiency across multiple mobile platforms. The application developer should
offer the best user experience, targeting the GPU’s considerable resources where they will
enhance the final result in real-world situations. By examining the restrictions on per-
formance imposed by current mobile rendering solutions and comparing with the desktop
graphics industry, it is possible to discuss developments in mobile graphics and the impact
of potential hardware and API changes with a view to future-proofing applications.
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1. Why are mobile GPUs different?

1.1 Desktop graphics made mobile

Processing power in computers has grown exponentially over time, but these advances
have been far outstripped by the capabilities of computer graphics hardware. What took
days of rendering time for a feature film in the 1990s was interactive a decade later.
Affordable modern GPUs offer teraflops of processing power and hundreds of gigabytes
per second of bandwidth. Desktop GUI displays have grown from the common 14” VGA-
and-below to 20”-and-above screens with HD resolutions. Consumers are accustomed to
affordable photo-realistic graphics.

To achieve this performance, desktop graphics cards use supercomputer techniques.
Large, compute-heavy chips mean a lot of heat dissipation. Keeping the GPU fed requires
fast, dedicated memory. A modern graphics card is dense with memory devices, capped
with a large heat sink and fan, and powered directly. The fastest devices barely fit in the
average tower case and place high demands on airflow and power supply design.

The mobile revolution has raised opposite demands. Consumers want, above all, a
device that will fit in a pocket (or bag, for a tablet). The form-factor of desktop — or
even laptop — computers is not an option. Things have to be done differently.

Desktop vs Mobile

GPU

CPU MEM

RAM

RAM
CPU GPU

CACHE

RAM
64 RAM

128

128

128

25
6 

(to
ta

l)

PCIe

Figure 1.1: Desktop GPUs have dedicated memory with fast access. Mobile GPUs generally
have a single, small, memory bus shared between the CPU and GPU.
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1.2 Cutting it down

The first mobile devices had no graphical capability at all, and early monochrome
LCDs required no graphics hardware to speak of. Yet the demands of a visual age mean
that consumers have not been happy with such devices. Increasing capabilities and the
demands of interactivity made colour displays and, later, hardware acceleration necessary.
It is tempting to think that the only aspect to making a mobile graphical system is to cut
down a desktop device until it fits.

Reality is not so simple. Cutting a 24” HD desktop monitor down to fit a 4” phone
leads to a display with only 320 × 180 pixels. It is certainly possible for a simple GPU
to handle a display of this resolution. With low resolution, and typically low bit depths,
bandwidth demands are small. The small frame buffer might fit onto a single, affordable
SoC.

Unfortunately for mobile hardware designers, things are not so simple. While accept-
able for a microcomputer of the early 1980s, a display quality this low is not sufficient for
modern uses. Fun though Snake is to play, the mobile internet and the advance of the app
store mean that content consumers have higher demands. A display that has thirty-six
times less area and thirty-six times fewer pixels than a desktop system cannot hope to be
as useful.

1.3 Upping resolution

As content-consumption devices, mobile screens have grown to match or exceed the
resolution of desktop systems. The requirement to match the written page has pushed
tablet resolutions, even where the larger screen size of a tablet has made the pixel pitch
less of a requirement. The latest high-end cell phones typically support 1920×1080 screens
or more, with multiple tablets supporting 2560 × 1600 resolution.

High resolutions — especially in the bit depths necessary for high quality image brows-
ing and video playback — require a larger frame buffer than can practically fit on a sin-
gle IC. Increasing resolutions demand larger textures, more geometry and more compute
power. The small form factor of mobile devices makes it tempting to think of them as
having lower demands than their desktop predecessors. In reality, even the power savings
of subsequent silicon processes have not been sufficient to bring mobile performance up
to the required levels. To achieve effective interactive rates with good graphical quality,
mobile GPUs must take different approaches from their desktop cousins.

1.4 Limiting size and power

The demands on a modern GPU necessarily require a large power draw, no matter how
clever the architecture of the GPU. Having this power available in a mobile form factor
necessitates a large battery. Particularly when the device must fit in the hand or pocket,
maximising the battery area means that the circuitry must be as small as possible. Where
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the area of a desktop graphics card supports distributing the heat produced by the core
and by external RAM chips, no such option is available in mobile.

While it is possible to attach a rudimentary heat sink to mobile devices, active air flow
is not currently considered practical, so the density of circuitry provides its own challenges.
The shape of mobile devices is at least amenable to offering a large surface area for its
volume, but a screen is hardly an ideal conductor of heat. It is common for users to cover
mobile devices with protective cases, which impact on cooling, and at best the device
must function when insulated by resting on furniture. Since the front of the device is the
only portion that is guaranteed to be exposed, it must be responsible for most of the heat
dissipation, yet since users interact with these devices via touch screens, the device may
not grow so warm as to be uncomfortable to hold.

Mobile devices must therefore incorporate a thermal throttling mechanism. As the
device heats up, the clock speed of the GPU and CPU are reduced to moderate the current.
Where a desktop system can simply increase the fan speed, mobile devices cannot sustain
high power demands for an extended period of time. Even when the desired performance
can be matched in testing, it is therefore necessary for the mobile developer to monitor
the system’s efficiency and ensure that performance will not drop over time.

1.5 Bandwidth vs processing

Space and cost requirements typically necessitate that off-chip RAM be shared with
the CPU — almost all mobile devices have a unified memory architecture. A single bus
is more efficient in both space and power. However, space and power requirements also
demand that such a bus should be only as large as necessary for the required performance.
Any system must be designed for an assumed work-load; even if the GPU work load is
under control, the CPU’s demands on the memory bus need to be considered.

Modern integrated circuits are so efficient that driving even small off-chip circuitry can
require much more power than work done within the chip. On-chip caches and efficient
ordering of memory accesses are necessary to keep bandwidth demands as low as possible.
Even so, the onus is on the application author to be sympathetic to this design, and to
code in such a way as to maximise efficiency.
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2. Tiling

2.1 Reducing frame buffer bandwidth

Many — although not all — mobile GPUs make use of a technique known as tile-based
rendering.

The conventional immediate-mode rasterising process involves processing each render-
ing primitive in turn, updating any pixels that are covered by the view of the primitive.
The vertices of each triangle are conceptually transformed into screen coordinates, then all
the pixels which fall within this triangle are drawn onto the frame buffer. This approach
means that geometry can be processed simply, in the order in which it is submitted.

However, because there need not be any spatial relationship between consecutive tri-
angles, the immediate-mode rendering approach can require multiple locations within the
frame buffer to be accessed repeatedly and in an arbitrary order. In a mobile GPU, ac-
cessing an off-chip frame buffer in this way puts demands on the limited bus bandwidth
and consumes power.

We can compare this approach with a conventional ray caster (the first, eye ray, pass of
a ray tracer). In a ray-casting system, each pixel is considered in turn, and the ray passing
through that pixel is tested against all of the geometry in the scene to see what primitive
is nearest to the eye — typically this is done with the assistance of some form of spatial
acceleration structure. While ray casting requires no dependency between the rays passing
through the scene, this independence means that no advantage can be taken of coherency
between adjacent rays: calculations are not shared between multiple rays intersecting the
same geometry. Ray casting in this way increases the computational cost of rendering and
requires a large amount of memory traffic to traverse the scene representation for every
pixel.

A ray caster can be accelerated by treating rays as bundles and amortising work
across all the rays in the bundle. A tiled rasteriser is a very similar solution: the screen is
divided into rectangular tiles which are independently rasterised. This approach requires
the geometry contained within the scene to be processed repeatedly, but — unlike a
simple ray caster — once per tile rather than once per pixel. The approach is equivalent
to iterating over the screen area one tile at a time, setting the viewport to the tile area,
and rendering the scene — except that the tiled rendering is automated.

Rendering one tile at a time means that the frame buffer for a tile can be rendered
entirely on-chip in cache or dedicated RAM. This ensures that each pixel needs to be
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Figure 2.1: Immediate rendering order: Each triangle is processed in turn, building up the
image one triangle at a time.
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Figure 2.2: Tiled rendering: The image is broken into tiles which are rendered indepen-
dently. Only the primitives which intersect a tile are examined when the tile is rendered.
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written to external memory only once. If the overhead of accessing the geometry is lower
than the overhead of accessing the frame buffer, total bandwidth requirements are reduced.

2.2 There’s more than one way to do it

Each vendor has its own take on tiling. Typically the graphics processing begins with
a vertex shading pass. As in a conventional graphics pipeline, the vertex shading pass de-
termines the on-screen location of graphics primitives. In a tiled renderer, this pass makes
it possible to determine which tiles are associated with each primitive — or, equivalently,
which geometry is associated with any tile. Once all the geometry has been processed
(and, therefore, once all the primitives that may be associated with any tile has been
determined) each tile is processed in turn. Because the geometry has been classified by
the first pass, primitives that are not included in any given tile are not considered when
the tile is processed.

The exact mechanism used to implement the tiling pass varies by device, according to
the designers’ decisions about how best to balance the overhead of classifying the geometry
and the time taken to render each tile. The form of the processed primitives varies, as
does the size of a tile and whether multiple tiles can be processed in parallel. No matter
the implementation, there is always an overhead to increasing the amount of geometry
compared with using an immediate-mode renderer. The difficulty for an application author
is to achieve the desired image quality without incurring an undue geometric overhead,
particularly if the application must extract the best performance from multiple GPUs.

2.3 Discarding the unnecessary

It is common to begin the rendering process for a frame by clearing the frame buffer,
Z and stencil buffers. One advantage of tile-based rendering is that, if the depth and
stencil buffers are not needed for the next frame, there is no need to write this data out
to external memory: it can be discarded as soon as the tile has been rendered, and need
not be reloaded before the tile is rendered again in the next frame. This can save a useful
amount of memory bandwidth, but requires the API to be told that these buffers will not
be needed again. For example, in OpenGL ES, the EXT discard framebuffer extension
can be used to inform the API that on-chip data need not be transferred to main memory
for later use, and retrieved in the next frame.

Tiled renderers have a particular advantage in anti-aliasing. Super-sampling in a tile-
based renderer can be implemented by rendering the tile at a higher nominal resolution
and performing a down-sampling step in the process of writing a larger on-chip tile to a
smaller in-memory representation of a frame buffer. This does not make super-sampling
free: the shading — and especially texture access — cost of rendering at a higher internal
resolution can still be significant, meaning that multi-sampling can still be worthwhile.
In either case, tiled renderers avoid the need for additional data to be stored off-chip,
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typically giving anti-aliased rendering a lower overhead than a simple immediate-mode
renderer could achieve.

2.4 Overdraw and deferred shading

Because the frame buffer — including the Z buffer — can reside on-chip in a tile-based
renderer, the overhead of overdraw can be lower than for an immediate-mode renderer.
When shading is expensive, this means that making use of deferred shading techniques can
be valuable. The conventional implementation of this approach involves first rendering the
geometry in the scene, writing only to a depth buffer, then performing a second pass with
fragment shaders enabled. In the second pass, any complex fragment shaders colouring
pixels that would have been overdrawn will be excluded by being behind the primed Z
buffer. The cost of writing repeatedly to the Z buffer on a tile-based renderer is lower
than would be the case if the buffer needed to be written to memory.

Countering this advantage is the cost of processing more geometry. Some hardware is
capable of performing deferred shading as part of its internal process, avoiding unnecessary
overdraw. For these systems, performing an explicit deferred shading pass is actually
counter-productive, and geometry should ideally be submitted in an order to minimise
the number of state changes, limiting the number of API calls. On other architectures,
the choice of deferred rendering is determined in part by the shading cost and whether
it is possible to minimise overdraw in some other way — for example by attempting to
submit geometry in front-to-back order. The evaluation order is, of course, complicated
by transparent surfaces.
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3. Keeping things moving

3.1 Deferred rendering

The rendering process with a tile-based renderer involves an initial classification pass,
which must have processed all the geometry submitted to a scene before rasterising can
begin. This inherently turns rendering into a two-stage process, whereas an immediate-
mode rasteriser can begin fragment shading as soon as a primitive’s vertices have been
processed. This latency is the cost of increasing throughput.

The extent of this overhead varies. On some devices, vertex shading (binning) and
fragment shading (tile rendering) follow immediately. In others implementations, the two
passes are explicitly split between frames so that the different demands of vertex and
fragment shaders can be balanced. That is, as geometry is submitted, vertex shading is
performed, classifying the geometry by the tiles it covers; while this is progressing, the
tiles of the previous frame are being rasterised. The result is an increase in throughput
at the cost of an increase in latency, similar to the “alternate frame rendering” modes
of NVIDIA’s SLI and AMD’s CrossFireX. Developers should be aware of this difference
between frame rate and latency when considering latency-sensitive applications.

3.2 Reading and writing too soon

The cost of any system which is dependent on exchanging throughput for latency is
that any attempt to minimise latency will have an effect on throughput. Any approach
which requires rasterising part of a frame’s data in order to render the rest of the frame
is likely to introduce a bubble into the pipeline. Where possible, removing dependencies
from the pipeline can avoid a potential performance loss on those platforms which split
the rendering across multiple frames.

Some operations require the CPU to wait for rasterising to complete before rendering
can continue. In OpenGL ES, glReadPixels is the obvious example of this, but the same
applies to occlusion queries. Where possible, approximating an occlusion query by using
the result of a previous frame’s rendering can be an approach which reduces overheads.

More insidiously, the deferred fragment shading pass means that texture access may
not complete as quickly as expected. Implementations must be aware of the dependencies
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Frame 2 Frame 1
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Figure 3.1: Deferred rendering: While the application is submitting one frame for vertex
shading, the previous frame is being fragment-shaded. The frame before that is on the
display!

in rendering order imposed by environment mapping, for example. However, when texture
updates originate from the GPU, latency can be more costly to hide. Typically multiple
copies of textures need to exist to support this case, potentially incurring a copy between
textures during each frame. Manually retaining multiple copies of a texture and alternating
which one is accessed can help here.
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Figure 3.2: Blocking rendering: If the rendering of frame 2 depends on frame 1 being fully
rasterised, the system must wait for the rasterisation pass to complete, losing parallelism.
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4. Geometry limits

4.1 The perils of polygon proliferation

Any regular spatial partitioning scheme provides the chance for a triangle to be partially
contained within more than one tile. When more than one tile holds the primitive, the
triangle’s representation needs to be processed for each tile in which it is contained. If the
triangle data is stored for each tile that contains it, the representation must be written
repeatedly as well as read; if the triangle representations are referred to in a master list,
there is an overhead both to reading the triangles which are contained in the tile and to
skipping over those triangles that are not contained in the tile. 2D applications can try to
manage this by aligning geometry so that it does not unnecessarily cross tile boundaries.
(The tile size varies by architecture, but several use powers of two.) Hierarchical tiling
schemes can be very efficient, but suffer when a lot of geometry crosses a high-level tile
boundary; this should be rare, but uneven performance can result when a large amount
of overdraw hits such a boundary — level of detail control can help to limit this.

While increasing the geometry count carries an inherent cost in any graphics sys-
tem, this cost is magnified in a tiled renderer because of the need to consider polygons
repeatedly. The more tiles are used to render the scene, the higher this relative over-
head will be; therefore tiled renderers see a higher geometry load on larger screen sizes
— although, hopefully, a lower frame buffer transfer load than an immediate-mode render
would achieve. In some architectures, enabling higher super- or multi-sampling rates can
also reduce the tile size: the size of the on-chip frame buffer is limited, and — while only
the reduced representation gets written to the off-chip frame buffer — the number of tile
passes required to cover the image is limited by the full pixel size before the oversampling is
resolved to final screen resolution, producing a higher cost than might have been expected
simply by allowing for the additional fill and shader rates.

This disadvantage is exacerbated because most schemes for binning triangles according
to tile are conservative — for example, testing only the screen-space bounding box of
the triangles — thereby including a detectable fraction of triangles that are not, in fact,
contained within the tile. This can become especially evident with long, thin triangles: not
only are these likely to cover multiple tiles, they may be incorrectly associated with many
more tiles than needed. Applications may be able to benefit by arranging tessellation to
be axis-aligned, if this can be done without greatly increasing the polygon count: long,
thin triangles are less costly if wide or tall rather than both.
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Figure 4.1: Polygon lists for each tile — note how often polygons are repeated
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Figure 4.2: A triangle fan in a tiled renderer
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Figure 4.3: Triangles intersecting each tile (total: 86)
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Figure 4.4: Triangle bounding boxes intersecting each tile (total: 136)
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Because tiled rasterisers must keep a record of the geometry to be rendered — some-
times replicated, depending on the representation — there is a necessary upper limit on the
number of primitives that can be processed before the implementation runs out of space.
To support more complex scenes, the implementation must render the geometry currently
available to it when its buffer are full, then resume with any additional geometry that the
application wishes to submit. Doing this typically involves the temporary storage of much
more state than is generally necessary at the end of a frame — for example, storing the
Z buffer or multi-sample buffers, which may not need to persist between frames, but are
needed to complete the rendering of a single frame. As a result, running out of space for
geometry storage — while it should not happen during a well-optimised application —
can show a heavy performance hit.

Within this limit, geometry-heavy effects such as particle systems can actually not be
as inefficient as one might expect on a tiled renderer. The reason for this is that very
small geometry often fits mostly within one tile. On some, but not all, hardware it can
be beneficial to try to retain some spatial coherency between consecutive polygons even
in a particle system, to ensure that the irrelevant geometry can be skipped efficiently. For
example, some implementations store a compressed mask associating the primitive list
with each tile. The compression allows large chunks of the geometry list to be skipped
efficiently by tiles that are not affected by them — but if consecutive triangles are dis-
tributed throughout the scene, this compression is less effective and tiles will often touch
more of the primitive buffer. Effects that can be implemented in a particle system can
sometimes be approximated effectively with a fragment shader effect, and — however un-
satisfactory to purists — that may be a good solution for mobile devices. Tilers that store
independent primitive lists for each tile are less affected by ordering, although they can
have a larger overhead when primitives appear in multiple tiles.

Since tiled renderers are a common solution in mobile environments, we can deduce
that these overheads are small enough that tiling is still beneficial for many current scenes.
The balance between geometry access requirements and frame buffer storage depends on
the scene and the details of the hardware — but the programmer can try to avoid the worst
cases. Sometimes there can be no substitute for increasing the amount of geometry being
rendered — there is no practical substitute to that. Yet these efficiency issues imposed by
tiled renderers mean that application developers may benefit from using other solutions
for maintaining image quality.

4.2 Tessellation/geometry shaders

Tessellation and geometry shaders can help to support large polygon counts on a desk-
top system by magnifying the effect of a simple graphics API invocation. Enabling this
functionality on a tiled renderer has its own set of challenges. It may seem that an effi-
cient way of supporting large amounts of geometry is exactly what a tiled renderer needs.
However, the flexible nature of the programmability in geometry and fragment shaders
means that the only practical way to determine which tiles are affected by transformed
geometry is to generate and transform each triangle. If the geometry is recorded in its
tessellated form during the binning phase of a tile-based renderer, there is no bandwidth
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advantage over each triangle being specified explicitly — though the work of generating
the triangles is still moved from the CPU to the GPU.

There are approaches to tessellation that can have lower bandwidth requirements, but
making the best of any GPU-accelerated tessellation scheme on a tiled renderer involves
finding a way to avoid undue memory accesses.

4.3 Silhouettes and shader transparency

The amount of geometry used to represent an object typically has the most visible effect
on the edges of the object. It is well-documented technique to use surface shading, for
example with ray casting through a height field, to describe an object’s bounds. While
programmable holes in shaders (e.g. using fragment discard) can result in a slower path
through some shading hardware — and of course the fragment shader is evaluated for pixels
that are not part of the final surface — this must be balanced against the overhead of addi-
tional geometry. Partial shader transparency can reduce the need for super-sampling and
an increased shading rate in this approach, but implementing efficient order-independent
transparency can be challenging, especially without relying on proprietary extensions.

Figure 4.5: Using a fragment shader with discard to achieve a silhouette
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4.4 Putting vertices on edges

An alternative to relying on fragment shaders to produce smooth boundaries is to
arrange the geometry such that more vertices are visible near the visible boundary of an
object. While this is commonly considered to be the work of a tessellation shader, in
some cases a similar effect can be achieved by careful relocation of existing vertices — as
a simple example, rendering a sphere as its circular silhouette (with the fragment shader
making the spherical shape) can be cheaper than using a polyhedron to get the same
quality. While this technique can add complexity to a vertex shader, the resulting reduced
geometry count and the reduced size of the remaining polygons can help performance.

4.5 Index buffers: caching vs locality

Using index buffers to re-use vertices is a well-known optimisation, allowing both a
reduction in vertex bandwidth and allowing the vertex shader calculation results to be
reused. However, this cache may be quite limited on a mobile device. If the indexed look-
up (which itself requires a small amount of bandwidth) results in frequent cache misses,
the memory transfer overhead of using an indexed buffer may actually be significantly
higher than using a simple vertex buffer directly.

Step size Desktop Mobile #1 Mobile #2
1 200ms 2.6s 2.4s
4 350ms 2.5s 7.5s
16 550ms 4s 9.5s
64 550ms 5s 8.1s
256 400ms 3s 9s

Figure 4.6: Time to render 224 triangles 10,000 times, with indexed vertices
and different steps between consecutively-rendered triangles

The desktop system is a conventional immediate-mode rasteriser
Mobile system #1 stores triangles in separate lists per tile

Mobile system #2 has one triangle list, indexed separately per tile

4.6 Culling before submission

Barring an efficient way to exclude geometry from being rendered in the API, the more
the CPU can avoid requesting geometry to be rendered the better. As ever, there is a
balance to be struck here: much of the work to get performance from a modern rendering
API is achieved by submitting large amounts of geometry with the minimum number of
CPU calls, so the exclusion of unnecessary geometry must be done without breaking the
useful scene description into chunks so small that they incur a large overhead to render.
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4.7 Making the CPU do the work

While it is beneficial for latency reasons to keep the CPU as removed as possible from
the rendering process, it is worth remembering that the multi-core SIMD-aware CPUs on
an embedded device are quite powerful, and often less constrained than the GPU by being
in a mobile environment. With a suitable level of buffering to ensure that buffer accesses
do not cause the GPU to stall, performance can be gained by sharing the work between
the GPU and the CPU cores, especially if the required processing is a poor fit to the GPU
hardware, for example by being condition-heavy.
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5. Small texture caches

5.1 Proceed with Format (Y/N)?

Among the many resources that is restricted on a mobile device is the texture cache.
Since bandwidth is already a problem, regular texture cache missing can be a large perfor-
mance hazard. The first and simplest solution to this is careful selection of texture formats
and sizes. If your texture does not need an alpha channel, some hardware can represent
it in less space. If your texture would contain enough information in 16-bit mode — or,
when available, using an indexed palette — this can save even more space.

The resolution of the texture should be selected carefully. Accessing an unnecessarily
large texture is an obvious way to thrash a texture cache, and to require additional band-
width when that texture is accessed. Accessing multiple textures unnecessarily can have a
similar effect — particularly, if the textures are being used to store different components
corresponding to the same coordinates, attempting to pack the data can be a worthwhile
performance saving.

5.2 Compression schemes

Even more so than desktop systems, compressed texture formats can appreciably help
reduce bandwidth requirements further, once the smallest possible textures are in use.
Unfortunately, writing portable applications that use compressed textures is made slightly
awkward by the proliferation of standards. The good news is that in the latest version
of OpenGL ES, support is provided for the ASTC format (family), which provide good
quality compression across platforms. At the time of writing, support is still making its
way into products, so the biggest risk here is with legacy device support.

Texture compression schemes typically come in families. It is not sufficient merely
to decide to use “texture compression” — attention should be paid to the best mode
of compression for the content. Not packing an alpha channel can markedly reduce the
size of some compressed formats, for example. Since texture compression schemes are
typically block-based, better quality can sometimes be achieved be aligning detail to block
boundaries.

While it is likely to be less friendly to hardware, in a shader that is light on computation
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but heavy on texture access, it can be worth trying to implement a proprietary scheme
that suits the characteristics of your data. Sometimes built-in but uncompressed formats
can be more effective with some types of content — although there is a risk that some
APIs expand out some formats to a canonical, larger, representation.

5.3 MIP maps — friend or foe?

MIP maps provide a convenient way to support reasonable texture filtering quality with
good performance on any graphics device. There is typically an overhead to performing
trilinear filtering — it is uncommon for mobile silicon to dedicate enough hardware to
provide this for free — but MIP maps still provide a good solution for general purpose
rendering.

However, it can be useful to pay close attention to what is being rendered. Many
mobile applications, even those that use a 3D rendering API to draw the display, produce
essentially affine transformations: each pixel in the destination projects to a pixel of the
same size in the source. It is common for pixel processing to take place in a pattern
designed to achieve good locality of reference during texturing. Multiple texture accesses
are sometimes not a big performance problem, but cache misses are. If multiple pixels
access the same MIP level, there is a good chance of these accesses falling in the same cache
line. Requiring access to multiple MIP levels effectively doubles the cache requirements
(although one MIP level would be expected to change more slowly than the other). As
such, it can sometimes be more efficient to perform higher-order texture sampling at one
MIP level in preference to accessing multiple MIP levels and blending between them, even
though the filter support may be larger and more filter taps required.

As ever, there is a trade-off here: there is a limit to the number of texture accesses
that can be in flight at any given point, and additional filter taps put demands on shader
resources. Particularly, using a large number of temporary registers can result in a loss of
parallelism, which in turn can result in an inability to hide the large number of texture
accesses. The resulting performance will depend heavily on the texture demands of the
shader program, the details of the hardware architecture, and the texture itself.

5.4 More compute, less bandwidth

It is a common approach in fragment shader writing to use small textures to store the
results of calculations. These textures can then be used as a look-up table, reducing the
amount of heavyweight calculations that the shader must perform.

While this approach remains valid in a mobile environment — especially on hardware
for which a simple texture access is appreciably more efficient than the bilinearly-filtered
version, and where register pressure from complex calculations can easily impinge upon the
available parallelism — it is important to remember the cache limitations of a mobile GPU
when applying this approach. A small look-up table can be valuable; one large enough to
evict other texture access information from a cache may not be. The amount of latency
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that can be hidden in a mobile GPU is small enough that it is much easier to invoke cache
thrashing behaviour — and the resulting loss of performance can be enough to hide a lot
of calculation, especially if those calculations are simple and can be performed in parallel.

Additional computation can also be useful in reducing the texture requirements. Be-
yond the obvious (in the sense of “a small matter of programming”) sense of actually
describing the texture effects algorithmically, shaders can also be used to warp texture
coordinates. While on some architectures this removes the opportunity for an optimisa-
tion that can reduce the overall shader latency, warping texture coordinates can provide
a convenient way to provide texture detail where it is needed and limit the bandwidth
requirements where that detail would be redundant.

This optimisation is especially useful since most texture formats have a fixed data rate
(since this simplifies random access); this means that, unlike a general image representation
format such as JPEG, it is not possible to encode detailed areas of the image with more bits
and plain areas with fewer bits. Deforming texture coordinates can offset this limitation,
making better use of texture resources and improving texture cache hit rates. The same
approach can be effected by careful association of texture coordinates with vertices, but
additional fragment shader work can be used to avoid discontinuities and achieve the same
result in fewer primitives.

5.5 Shadow maps vs stencil shadows

Several mechanisms for implementing shadows are well known. Of these, shadow maps
are known for being relatively easy to generate and efficient to access. Stencil shadow
volumes have fallen out of favour, since in most renderers they produce a large amount
of geometry that is has a lot of pixel coverage, leading to inefficient access patterns on a
typical GPU.

In a tile based renderer, the increased geometry count of stencil shadows remains a
problem — and is arguably exacerbated. However, the actual stencil rendering operations
can be extremely efficient in a tiled renderer, since the stencil buffer can be retained entirely
on the GPU. The stencil rendering operations are light weight, and have simple shading
requirements, at least if the accumulation is performed in a single pass, although efficient
support for multiple light sources in this solution can be complicated. It is more costly
to resort to multiple passes over the geometry, masked by the stencil buffer, to process
the illumination component from each light source — while this allows for multiple light
sources, it magnifies the geometry overhead inherent in a tiled renderer.

However, mobile architectures also suffer during shadow mapping. Shadow maps are
typically quite large structures (even allowing for compression techniques), and locality of
reference is not guaranteed — they are a poor fit to the limited texture cache resources on
average embedded GPUs. Which of these solutions is best will be decided by the number
of lights in the scene, the efficiency with which each approach can be implemented, and
details of the architecture. As ever, experimentation is best.

26



5.6 Environment maps vs cheating

Rendered environment maps — as opposed to pre-baked reflections — suffer similar
problems to shadow mapping. Rendering to cube map surfaces necessarily requires an
increase in the amount of geometry, especially where the API does not make automatic
replication an option. After doing all this hard work, often some of the cube map faces
will prove to be invisible in the final scene — and much of the “reflected” geometry that
would be visible in a surface may be unseen due to blockage by other geometry. While
effective and simple, this solution is indubitably wasteful. If the reflective surface is highly
curved, there may be very poor locality of reference in the resulting texture accesses, and
the appropriate shading rate can be hard to determine.

If the solution to this were simple, environment maps would not be a popular approach.
However, reflections are a good case for the computer graphics tradition of “cheating”.
If a reflective surface is large and flat, the most efficient approach — even though it
means replicating geometry — may be to perform portal culling and render the mirrored
geometry directly. If the reflection is rendered collectively, there is a good change of the
most efficient mapping to the tiler’s binned architecture.

The approach of reflecting the geometry becomes much less appropriate as the num-
ber of reflective surfaces increases: particularly, curved surfaces — or approximations to
them — would require in inordinately large number of reflections to represent. However,
here we have an advantage: the human eye is very poor at identifying objects that have
been distorted by being reflected in a curved surface. This typically means that, though
an environment cube map may have to be generated, the textures required can be low
resolution, and often low-quality proxy geometry can be substituted. If all else fails, it
can be worth considering ray tracing for small reflective components in the scene: while
the shaders may be very slow, if the number of pixels on which they run can be kept small
enough the cost can be manageable.
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6. Hadn’t we dealt with that?

6.1 Precision

Desktop GPUs used to have a number of restrictions within which the application
developer needed to work. As hardware has expanded, these restrictions have been lifted,
enabling ever-increasing quality in rendering and ease of development.

Mobile GPUs are not less developed than their desktop cousins, but some of the
advances that have been made in desktop have carried a heavy overhead in silicon area
and power consumption. Once these features were present on the desktop, removing them
became impractical, but mobile architectures have often chosen to limit their capabilities
in order to focus on maximum performance on common work loads.

A particular case in point is that of the precision at which calculations are performed.
It is common for a desktop GPU to need to be capable of accurate single- and double-
precision floating-point operations — these GPUs are used for scientific modelling, for
financial transactions, for cinematic rendering, and it is important that silicon area be
devoted to getting the right results. While GPU computation is starting to grow in the
mobile space, the priority is still very much on efficient rendering performance, and basic
computer graphics can work very well even with limited ALUs.

Legacy GPUs may only have low-precision operations available, but even more modern
solutions can get a significant performance win from working in less than full floating-
point precision, and it is not unusual for some full-precision or 32-bit integer calculations
to be costly even when working with a “32-bit” GPU. The good news is that ensuring
that shaders are optimised for lower-precision work can bring appreciable performance
increases; the bad news is that being unaware of the hardware’s power optimisations
can result in errors in the output which the programmer may not have expected. This
behaviour is very dependent upon implementation, and it is not sufficient to test on a
single mobile architecture and assume that the application is portable. This is true even
if the test platform is known to operate at reduced precision, since sometimes rounding
errors can cancel out.
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6.2 Texture limits

Desktop GPUs are used to large texture areas being available. This is not universally
true in the mobile space. The memory requirements are not necessarily an issue — cell-
phones with 3GB of RAM are now reasonably common and there is a move towards 64-bit
address spaces, mirroring the workstation graphics situation from the Windows XP era —
but the requirements of performing calculations that can provide accurate texture coordi-
nate access can be an issue. For this reason, many mobile GPUs retain a relatively small
maximum texture size. Of course, the bandwidth requirements of accessing such large
textures in a mobile environment are also likely to be a problem. Nevertheless, it can be
worth coding applications in such as way as to stay well within portable texture size limits.
The number of textures that can be accessed within a shader can also be restrained on
some mobile GPUs — much more so than on the desktop.

6.3 Shader resources

Desktop GPUs are designed to handle relatively complex shaders or compute kernels
efficiently. In mobile devices, the work typically done by a shader is much simpler, and
efficiency in simple cases is of a higher priority. The available die area for shader regis-
ters and for cache is relatively smaller on a mobile GPU, and these resources are scaled
appropriately for common, simple shaders — not for the potential worst case.

In a typical GPU design, both for mobile and desktop, the number of threads or warps
that can be running is determined by how the register file is shared out between them. In
turn, the number of parallel threads determines how much latency can be hidden when a
memory access is required. Typically it is possible for shader complexity to reach a limit
at which the latency for even in-cache texture accesses cannot be hidden by the available
number of threads, at which point performance starts to drop off precipitously. This point
can be reached with a simpler shader in a mobile GPU than on the desktop, leading to
unexpectedly poor performance compared to the theoretical relative ALU speeds of the
architectures.

29



7. Things you can’t do

7.1 Treat frame buffer processing as quick

It has become common on desktop graphics cards to perform post-processing effects
on the frame buffer to increase visual quality. While writing to the frame buffer — at
least components of it — can be efficient enough in a mobile GPU, the reduced memory
bandwidth means that multiple passes to implement depth of field or lens flare can be
extremely costly. It can be more effective to perform a separate rendering pass at a
lower resolution and use this as a texture source when applying effects. Interpolation of
the smaller image can often be performed with some hardware acceleration, reducing the
shader resources required. If only the low-resolution information is required, further gains
can be made by attempting to use only nearest-neighbour point sampling.

Those effects which do not rely on accessing multiple pixels — for example, colour
grading — can be more efficiently performed by adding the processing to the end of
fragment shading. Even if this requires the additional code to be processed repeatedly (if
no Z pre-pass is performed and the hardware is unable to remove overdraw for us), the
cost of the additional processing is often lower than that of reading a frame buffer-sized
texture.

The size of the frame buffer is a major factor in how well attempts to process it
will perform. This includes basic rendering, of course. It can sometimes be sufficient to
render at a lower resolution than the final display resolution and perform an up-scaling —
this has a cost in terms of sharpness, but in some rendering situations, this may not be
visible. Most obviously, the format of the frame buffer can have a large effect on memory
requirements: while full-colour rendering produces the best image quality, rendering to a
16-bit target can give large gains, especially on simple scenes.

7.2 Chain dependencies

The deferred rendering architecture of many mobile GPUs has a necessary effect on
dependent accesses — trying to read from the frame buffer during the rendering process can
be extremely costly on a mobile GPU. In theory, access within the current tile ought to be
cheap, but it may not be possible to configure memory access to support this — requiring
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that the frame buffer and all intermediate rendering state be written out to memory. Most
commonly, the whole frame will need to be written out to external memory before a pixel
access can be performed, and this includes all intermediate state used during rendering
which might otherwise have been able to stay on-chip. While frame buffer access also
affects parallelism on an immediate-mode renderer, the overhead can have a catastrophic
effect on a tiled renderer’s performance, removing many of the performance advantages of
using a tiled architecture in the first place. Needless to say, if there is any possibility of
using a substitute for frame buffer data, one should consider it.

It is not only frame buffer accesses which can introduce this kind of cost in a tiled
renderer: in some cases, switching between render targets can be a trigger to processing. If
the same render target is used multiple times within a frame, intermediate state can again
need to be written out to external RAM, to be recovered when rendering to that target
continues. It is therefore often useful on a mobile device to collect all accesses to a frame
buffer together — for example, rendering shadow and environment maps before processing
the main scene, rather than producing them at the time their associated geometry is
reached.

7.3 Trust optimisations to work everywhere

The underlying architecture of common desktop devices has converged; with exceptions,
optimisations that are applicable to one architecture will work well on another. As may be
seen by the number of caveats in these notes, the same is not true in the mobile space: there
are more solutions being attempted to resolve the power and space constraints imposed on
these GPUs, different innovations are being tried, and there are more key players involved
in producing competitive units.

Unfortunately for the application developer, the route to the best performance can
often be to detect the hardware in use and attempt to accommodate it. While much
of the optimisation work is implicit and performed by the drivers, with any non-trivial
application it can be easy to trip up the driver’s optimisations, especially if code is tested
only on a subset of GPU architectures. While GPU vendors are in a constant battle to
ensure that their hardware works well on all application code, an awareness of the different
rendering solutions can make life easier.

One particular situation in which different rendering paths can be useful is that of tile-
based deferred renderers that remove the necessity for Z pre-pass. For these architectures,
any processing from front-to-back order, or explicit initial passes to prime the Z buffer,
tend to hurt performance — it is more important to keep the number of state changes
that occur during rendering under control. For other architectures, at least when running
complex shaders, and explicit Z pass or some sorting prior to submission can provide an
important performance win.

Even the layout of ALUs can vary widely. In some architectures, a warp can consist
of many threads, and losing parallelism between shader invocations can result in a large
loss of performance: for these it can be important to try to eliminate as much branch
divergence from code as possible; this is especially the case in computation APIs. On other
architectures, the cost of divergent branching can be negligible. On some architectures
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the native work unit may be a 32-bit ALU operation; others work in larger SIMD blocks,
which offers good performance on a number of graphics-related workloads but can suffer
performance problems when the shader compiler is unable to expose enough instruction-
level parallelism to keep the ALU busy. Some architectures have dedicated processing that
can be performed on entry to a shader which can reduce the computation overhead of the
shader itself. It is generally the case that mobile GPUs are less parallel than their desktop
cousins, and can lose slightly less performance to branch divergence.

Differences in cache size can also heavily affect algorithmic performance, considering
the heavy cost of external memory access, exacerbated by differing levels of support for
texture formats. If an implementation converts a particular format to a 32-bit texture
during upload in order to support it, both bandwidth and caching performance can be
much lower than expected: just because a driver claims to support a particular format
does not guarantee that this support needs to be efficient.

7.4 Think of the display as “small”

Finally, there is always a danger when writing for a mobile device to assume that,
because the display area is small, the amount of frame buffer processing to be performed
will also be small. While there are short cuts that can be taken based on the display
size — something we will discuss later — the actual pixel count on a mobile device is
typically no lower than for a desktop system, especially since resolution has been used as
a differentiating factor for mobile devices but has — relatively — stagnated in the PC
market. However restricted the GPU performance and its memory bandwidth may be, it
is dangerous to consider the rendering demands to be similarly cut down.
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8. Form factors

8.1 So much for common resolutions

In the past, it was common to need to support a range of pixel counts and, to an
extent, aspect ratios, because the user could configure a CRT to display many different
resolutions. Countering this was the knowledge that, with a CRT, the application author
could impose full-screen resolution choices without impact on the image quality.

The proliferation of desktop LCDs removed the flexibility for the developer: the fixed
resolution of panels meant that picking an arbitrary resolution could have a negative
effect due to interpolation. Fortunately for developers, the number of resolutions in which
desktop panels were manufactured was relatively limited, especially if the most obscure
resolutions were excluded. The move to wide-screen panels introduced more aspect ratios
with which to be concerned (typically 5:4, 4:3, 16:10 and 16:9). Manufacturing demands
of laptops increased the range of common resolutions somewhat, yet the number of options
was still relatively manageable.

The requirements of price/performance decisions and different product shapes means
that mobile devices extend the number of resolutions that need support yet further; higher
resolutions and the largest viable screen have improved the web browsing and video play-
back abilities of devices, and it has been the job of the application author to ensure that
other software is sufficiently flexible to accommodate all possible options. The developer
must also accommodate different physical pixel sizes in a way that is rarely a priority
in the desktop space. A simple desktop application can work at a single size in a scrol-
lable window. Mobile applications are, almost exclusively, designed to take over the entire
screen, and therefore must accommodate whatever shape or size that screen might be.
The wide range of display resolutions means that relying on the resolution of the screen
and anti-aliasing support to make the display look good may not work well: some form of
hinting and attempts to align content to the pixel grid can be valuable.

Common Android device resolutions (source: Wikipedia)
240 × 240 640 × 480 1024 × 600 1440 × 900
320 × 240 800 × 480 1024 × 768 1920 × 1080
400 × 240 800 × 600 1280 × 720 1920 × 1200
480 × 320 854 × 480 1280 × 768 1920 × 1280
640 × 360 960 × 540 1280 × 800 2560 × 1600
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8.2 Aspects of ratios

Since the move to fixed-resolution LCD panels, panels have generally been made in
relatively few shapes. Mobile devices are necessarily somewhat more variable, allowing
designers flexibility in device shape. The onus is on the application author to make good
use of the screen area. Simply stretching the display can lead to highly-distorted textures,
yet the range of available screens can make explicit support for each shape impractical.
This means that applications need good dynamic layout support (and testing).

8.3 Button bars

Despite this flexibility, a finite number of panels are on the market. This ought seem to
simplify the range of resolutions that need considering. However, some platforms devote
areas of screen to interaction mechanisms. Even within an operating system, hardware may
be designed with dedicated input areas, or some of the screen area may be appropriated for
soft buttons. This effect can increase the number of resolutions that need to be supported
inconveniently, especially if different platform revisions change the button bar size.

8.4 Rotation

For an ideal user experience, applications must also support the user’s choice of screen
orientation. While less important for some games (which can enforce that the user rotate
the device to landscape mode, for example), it is still convenient for the user to be able to
choose which landscape orientation to support. For general applications, the author may
provide a completely different experience when the device is in a portrait orientation, or
choose to share large portions of the rendering framework between configurations.

8.5 From phones to tablets

A user’s experience depends not only on the screen resolution and shape, but also
on its physical size. This is especially true since most mobile devices are touch-screen
driven. Touch-screens place user interface requirements on software — particularly the
lack of pixel-perfect selection ability and the need for larger target areas. The ideal way to
present an application on a small cell phone may be very different from how it appears on
a 12” tablet. Authors need to be aware of (currently) unusual form-factors as well: mobile
operating systems are increasingly used on televisions and large-format touch screens, in
automotive scenarios, and in very small devices such as watches. The pixel count of such
devices is not necessarily closely related to the display size.

The size of pixels has a direct effect on the necessary image quality. In a modern
high-density cell phone, individual pixels are small enough that they are hard to see at
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any viewing distance; for static content consumption, this is a desirable property. In a
large tablet with a relatively modest resolution — as in “feature phones” — individual
pixels are far more a concern. This means that the author may need to be more directly
concerned with anti-aliasing quality, hinting (aligning scene elements to the screen pixel
grid) and even sub-pixel rendering.

The best use of screen real-estate also varies by device format. While 1920 × 1080 is
a common resolution for both computer screens and cell phones, the larger angular view
offered by a typical monitor compared with a cell phone held at a comfortable viewing
distance makes the experience very different. This can be seen by the layout of most web
pages: it has become conventional for web text to have extensible borders on either side,
ensuring that the text itself does not expand beyond a comfortable line length for viewing.
Text in newspapers has long been split into multiple columns for the same reason, and
text layout packages typically support a large border when filling a page with a single
column.

On a typical cell phone, using the same font size in pixels that would be appropriate
on the desktop results in something very hard to read, and a waste of screen real-estate.
The pixel size of mobile text is therefore typically larger than on the desktop, with the
extra resolution allowing an improved text quality. The additional real-estate of a desktop
system is better used to support multi-tasking or control elements. Tablet designs fall
between these extremes: it can be uncomfortable to view text across the entire width of a
large tablet in landscape mode, yet — especially in portrait configuration — there is little
area for fitting additional content on the screen. These user-interface concerns apply even
to mobile gaming with unusual interaction mechanisms.

Figure 8.1: Increase in screen sizes over time
2010: HTC Desire — 3.7” 800 × 480

2011: HTC Sensation — 4.3” 960 × 540
2012: Samsung Galaxy S III — 4.8” 1280 × 720

2013: Google Nexus 5 — 4.95” 1920 × 1080
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9. Getting it on-screen

9.1 Composition overhead

In desktop systems, particularly when gaming, it is common for an application to be
able to take over the entire display. Mobile systems can sometimes stop this from being
possible, to a greater or lesser extent — a status bar and, often, soft buttons can cut
into the screen area. This can result in a display of a slightly unusual size (it would be
optimistic to assume that all such intrusions are conveniently tile-aligned, for example).
On many cases, the composition step used to generate the final display can be performed
by overlay hardware, similar to the solutions available for hardware cursors on desktop
systems. The flexibility of this overlay can sometimes be limited, however, and the selection
of the wrong sizes, formats or orientations for each composition layer can be enough to
force and additional software compositing pass.

9.2 Getting data into your API

An optimist may look at a shared memory architecture and believe that this approach
will avoid all need for texture and buffer uploads. Sometimes, the situation can be this
simple — although we do not always want it to be. It is common for graphics hardware to
make use of optimised rearrangements of texture data in an attempt to maximise locality
of reference during rendering operations — enforcing the application’s image layout may
result in a performance hit in rendering. In addition, to save silicon area, some hardware
may not natively support every combination of texture format — for example, supporting
all possible arrangements of A, R, G and B can be wasteful; the texture upload process
can be used to transform the texture layout as needed.

In other cases, especially if the host application is frequently updating the texture or
vertex data, it can be beneficial to have a direct mapping of the memory, where APIs make
this possible. As discussed above, the danger here is that the application must aware of the
deferred nature of tiled renderers: updating a texture every frame in the expectation that
it is no longer “in use” may cause costly blocks of the pipeline or copies of texture data to
ensure that the correct data is still available when the renderer needs it. Estimating the
length of the pipeline and double- or triple-buffering can help greatly.
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9.3 Communications

The benefits of efficient texture handling are most evident when the content is not
sourced in a host application. Streaming images directly from the camera into a rendering
API can be much more efficient and require much lower latency than requiring host copies
to perform these operations. The same is even more true — and more frustrating for
the user — when it comes to transferring texture and geometry data between other APIs
running on the same hardware as the graphics API. There is no good reason, other than
API restrictions, why a GPU compute API should need to involve the host application
when providing processed images or vertices for rendering by a graphic API.

Efficient means of communication between APIs is an area under development. Check
for your latest extensions to ensure that the most efficient approach is being used!
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10. K.I.S.S.

10.1 Frame buffer compression

Mobile graphics hardware and drivers perform a lot of complex optimisations in order to
try to maximise performance. Unfortunately, the more complex the application’s rendering
pattern, the harder it is to perform some of these optimisations. One example of this is
that there are architectures with optimisations to avoid updating the frame buffer if the
content is unchanged from its previous value; in other hardware the frame buffer itself
is compressed to reduce bandwidth requirements. While a complex background full of
slightly animated objects (dancing plants, for example) may appear not to involve much
movement, it can have a high cost in terms of memory bandwidth compared with a simpler
interface. A cloud floating in the sky may have a much bigger overhead than one might
expect from the number of draw calls required to render it.

Not all frame buffer updates are caused by deliberate animation effects. Minor changes
in geometry caused by a combination of user input and rounding error can cause minor
frame buffer changes. These changes may be as small as a fractional change in sample
position, or a sub-pixel change in geometry which introduces an anti-aliased shift in pixel
values. Particularly on high-resolution displays, these changes may not be visible to the
user, and certainly have a small enough effect that they offer very little improvement in
the user experience. Performing deliberate quantisation of parameters during rendering
to avoid these changes — potentially with some form of hysteresis to accommodate value
that fall near a rounding error boundary — can enable large bandwidth savings.

The frame buffer may also itself be compressed, typically using a lossless, variable-
rate scheme. Because the compression depends on predicting the content of the frame
buffer, simpler images are likely to compress better and have lower bandwidth. In a 2D
application, aligning the regions of detail so that they touch a limited number of tiles can
allow other tiles to compress better.

10.2 Tiles don’t excuse massive overdraw

Tiled renderers have very fast access to the local frame buffer, compared with the
external frame buffer bandwidth. It can be tempting to treat rendering performance
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within the frame buffer as free, or only limited by the geometry overhead, because the
frame buffer access is so much faster.

On GPUs which perform in-order shading, it can be dangerous to ignore both the
overhead of running shaders and the bandwidth requirements of texturing. A Z pre-pass
or an attempt to perform front-to-back sorting can save a large amount of shading work,
even if all the rendering remains within the frame buffer.

Even once these optimisations are in place, rasterisation is not entirely free. Large
fragments within a tile can still take many cycles to process. Sometimes, ordering and a Z
pre-pass are not enough to hide calculation costs — most notably when alpha blending is
used. While some hardware has accelerated blending available during pixel write, a fully-
shaded fragment still contains multiple cycles of processing. If it is possible to determine
the position of multiple scene components algorithmically, it can be worth considering
performing a combination step in a single fragment shader.

This is especially true for static scene components: composition can be optimised by
blending multiple layers within one fragment shader rather than performing a number
of independent alpha-blended passes. As ever, there is a trade-off against the number
of texture stages available, the potential loss of parallelism by use of shader registers for
coordinates, and the risk of thrashing the texture cache lines, so experimentation on the
target architectures is worthwhile.

10.3 Pre-process your textures

As we have stressed repeatedly, texture access is costly for mobile devices — in band-
width and computation overhead. Many applications that use a 3D API for rendering are
still present a 2D interface, however — or behave that way much of the time. The require-
ments of portability mean that it is common for high resolution textures to be needed,
but in many devices these can be excessive.

Where possible, a large saving in bandwidth requirements can be gained by processing
the textures on start-up to scale them to the correct display resolution — though the
author needs to be aware that there can be more than one “correct resolution” when the
application supports portrait and landscape rendering. This can have the advantage of
allowing a higher quality of scaling than would be practical during rendering, and may
allow textures to be generated by pre-composing elements in desired positions, allowing
the components to be aligned to a pixel grid rather than relying on uniform scaling.

Not only can this approach reduce overdraw and the number of draw calls, it can
allow the footprint of the application to be reduced by allowing the texture memory for the
components to be reclaimed. If the final texture can be rendered using point sampling, the
fragment shading cost can be reduced — while there is often hardware support for bilinear
filtering, point sampling often requires less latency, reducing the amount of parallelism
required for maximum performance and allowing more advanced algorithmic effects to be
applied during shading.
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11. If in doubt, cheat

11.1 Micro pixels and macro effects

The extremely high resolution of many modern mobile displays — typically exceeding
500 pixels per inch — is enough that individual pixels can be all but invisible, especially if
the contrast is low. Anti-aliasing can give the impression of a higher resolution, and a high
resolution can compensate for anti-aliasing: depending on the content, anti-aliasing can
be unnecessary, and if alpha blending or multi-sampling can be at least partially disabled,
there can be a significant performance win. With a sufficiently high-resolution texture, the
same can apply to filtering — having an off-by-one error in a point-sampled pixel result
can be visually imperceptible.

However, it is necessary to bear in mind that many small pixels build up to a large
effect. Moiré patterns can cause accumulative effects on visibility — but this is true even
when the samples are super-sampled, in many approaches. Sufficient and correct filtering
is always needed when the content contains repeating patterns, but this does not mandate
its use in producing a visually-accurate boundary to an area of solid colour — for example
when rendering large text.

As ever, there are times when relying on high display resolution will be inadequate.
While many modern mobile devices do have high resolution screens, this is not a uni-
versally safe assumption. Older devices can have appreciably lower screen resolutions;
embedded software often runs on larger screens such as tablets and, especially, televisions,
which can have very large pixels. The user’s viewing distance is also a factor — even
a large television may make use of limited anti-aliasing if the viewer is sufficiently dis-
tant (billboard photographs often have quite low resolution, by comparison), and even
the highest resolution current displays can have visible pixels if the user is viewing very
closely.

11.2 Frame rate is the enemy of play time

For a smooth user experience, it is obviously beneficial to support a sufficiently high
frame rate. However, “sufficiently high” is a concept that carries a trade-off: few optimi-
sations can make as much of a difference to the power consumption of an application as
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simply not drawing as many frames. It can be tempting to assume that a target of 60
frames per second is always desirable, but the visual impact of dropping to a lower frame
rate, depending on the application, can be quite unintrusive — cinema has survived for
nearly a century with an effective 24 frames per second rate.

There is no requirement that the frame rate for an application be fixed. When the
user is not interacting with the device, avoiding redraw — or reducing the redraw rate to
a minimum that is suitable for ambient animation or informational effects — can save a
lot of power, with the frame rate ramping up automatically once responsiveness is needed.

Not the whole frame needs to be rendered at full speed. There have been good demon-
strations of how insensitive the eye can be to delayed indirect illumination effects — so
at least some heavyweight calculations can be performed at lower frame rates. The same
can apply to reflections — though the effectiveness in that case depends on how visible
the reflections are. It can easily be acceptable to perform lower rates of rendering — or
composition — to intermediate buffers and textures in some situations.

11.3 Interpolate (or extrapolate)

Just because an application has been designed not to run at the device’s maximum
frame rate does not mean that an interactive experience cannot be emulated. It is quite
common to know in general how large areas of the image are moving, allowing the screen
area to be redrawn shifted by an offset. There is a caveat here with tiled renderers —
reading the output of the previous frame’s rendering can be a performance hazard —
but solutions like this can provide much smoother motion than simple rendering at the
lower frame rate. If latency is not an issue, it may even be possible to perform intelligent
interpolation when the frames bracketing the interpolation are fully known.

Generating additional frames by extrapolating from previous motion can be useful as
a means of reducing perceived latency — which can be especially helpful in a tiled renderer
that has an inherent frame delay. While one solution to hiding latency is to extrapolate
the user’s inputs — assuming that a turn or scroll will continue at its current rate, for
example — this is only of limited help if the rendering itself takes a long time and the
rendering rate is limited. Combining this approach with motion interpolation and image-
based rendering can provide good interactivity and perceptual responsiveness at a reduced
cost.

11.4 Cloud rendering

Performing high quality rendering on a mobile device is inherently a high-power opera-
tion, no matter the effectiveness of the techniques discussed in this course. However, many
mobile devices have convenient network access — at least most of the time. This means
that the small, power-constrained GPU local to the device may be able to offload some
work to a remote, high-power render farm solution. Latency is an inherent problem in
cloud-based systems, although not always insurmountable for many styles of application.
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However, it may be that not all the rendering is sensitive to the same latency concerns —
for example, direct visibility testing and direct illumination, which are relatively cheap to
compute, may need to be rendered on the local device, but indirect illumination effects
might be best rendered in a cloud.

Of course, the network communication itself also uses power — and the networking
power drain (and cost of processing the data being transmitted and received) needs to
be balanced against that saved by not performing the rendering locally. This solution
can, however, be effective in expanding the absolutely rendering performance beyond that
available in a mobile form-factor, particularly in high-quality, low frame-rate applications
such as product visualisation.

Unfortunately, it is common for mobile devices to lose reception sometimes — or for
the network quality to be insufficient. Being clever about the amount of data that needs to
be transferred can help appreciably, as well as endearing the developer to the user who may
have to pay for an bandwidth allocation, but the user should be provided with a fall-back
path to ensure that the application remains usable in the absence of a connection..

Conveniently, when the remote rendering is used primarily to provide secondary visual
effects, it can be relatively easy to incorporate a lower-quality rendering solution into the
pipeline — but if the main bulk of the rendering is transferred into the cloud, the back-up
solution may require a complete replication of the rendering path. This is not necessarily
catastrophic — mobile devices can often be fast enough to support reasonable rendering
quality, for all the concerns in this course; the issue is that the power demands of doing so
are detrimental to the user experience — but if the on-device rendering only has to last
until a network connection is restored, this can be an acceptable cost.

11.5 A greasy blob with a hand in the way

When providing graphics for user interaction, it is easy to forget that there is something
on the other side of the touch screen. Performing high quality, low latency rendering for
the interaction point seems like a good idea in a desktop environment. On a mobile device,
the focus may be where the user is touching the screen — which inherently means that
there is a finger between the display and the user’s eyes. This approach can be used to
hide quite some otherwise quite complex rendering.

The quality of the display itself can also be limited. When developing on a desktop
system, it can be easy to assume that every pixel and every colour gradation is visible.
The small display on a mobile device is typically small, not clean, and often viewed under
unfavourable lighting conditions — it is easy to spend too much computational effort trying
to produce effects that the user cannot see because of the practicalities of the device.

Even under ideal conditions, it would be optimistic to believe that the user can make
out every pixel on a mobile display. Pixel count is not the only differentiating factor in a
mobile purchase, and as resolutions increase to suit the minority of users (and marketing
departments), pixels will increasingly be smaller than can be made out by their owners.
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12. Aesthetics are not everything

12.1 Look as good as you can, but no more

Pretty computer graphics have a “wow factor” — they can make an application, es-
pecially a game, seem appealing, and show off a device well on a shop floor. Sufficient
graphics to tell the user about the state of the application can be intuitive, and even im-
mersive. There is no harm in taking pride in producing the best visual quality practicable.

But the quest for perfection is costly. Every minor step in image quality places in-
creasing demands on the device and on the developer. While users value pretty æsthetics,
it can be easy to forget, while staring closely at a few troublesome pixels, that the most
important thing is functionality.

12.2 The cost of artistry

To the application developer, it may seem unprofessional to provide a “good enough”
solution. While heroically trying to provide the best quality applications for users, it can
be easy to lose sight of the fact that the user may not appreciate the result.

One reason that mobile app stores are so popular is that the typical cost of software
is quite low — particularly in relation to the PC and console market, for which the effort
spent on development has often had to justify the cost of the shelf space required to
distribute the software. Doubling the developer time on a mobile app may improve the
user experience, but it will also increase the development cost and potentially necessitate
increasing the price of the app. Customers may be far more interested in a bargain than
in perfection.

The highest quality rendering may demand cutting-edge hardware, even after all tricks
and optimisations have been exhausted. This is a great way to demonstrate the merits
of upgrading to the latest cell phone, but the majority of the market (who, ironically,
may be prohibited from an economical upgrade by network contract deals) may simply be
excluded from being able to use the app effectively.

Even when the hardware is capable, high rendering quality places high demands on
power consumption and phone heating. Slightly enhanced graphics may look nice, but
software which makes the device uncomfortably hot to touch and which empties the battery
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in a few minutes is frustrating for the user. Games or applications with simpler graphics
may lack the visual appeal, but if the experience of using the software is the same, static
scene components, lower resolution or bit depth and large static areas — potentially of
solid colour — can give the user most of the user experience but for much longer.

12.3 The app store vs the Blu-Ray

Developers familiar with PC and console environments may be used to vast amounts
of geometry and texture data, made available over multi-gigabyte physical storage media.
There is a temptation to try to provide mobile users with the most complete experience
possible and provide a similar amount of content. With the relatively fast connections
on recent devices, this is certainly possible, and a number of applications perform in-app
downloads of a large amount of content.

However, just because something can be done does not meant that it should be done.
When developing with a local connection on a desktop device, it can be easy to forget that
users often have to pay for their data allowance. A download of a few hundred megabytes
may be fast (or at least, fast enough — users are rarely pleased at having to wait for a
few minutes before the application works), but it can still be costly on some contracts. In
addition, storage space on mobile devices can be quite limited — and memory capacity
even more so. However proud the production team may be of the ten-minute, full HD,
effects-laden introductory video, many customers would rather have the space back for
music and personal photos.
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13. Using your advantages

13.1 Pixel density is good for detail

While much of this course has been spend apologising for the limitations of mobile
devices and trying to circumvent them, there are advantages as well. For example, the
high pixel density on mobile devices make them well-suited to presenting very fine detail.
A desktop display with a similar resolution is often large enough that the image looks
pixellated, which can impact the perceived clarity. A 500ppi display looks very sharp
because it is very sharp. Photographic detail is preserved nearly to the level of the eye,
text can be rendered with a very high perceived quality — especially since the size of text
in relation to the total screen area is typically so much larger than for a desktop display.

13.2 PenTile and colour frequency

A number of mobile displays use unconventional pixel layouts as a means to balance
efficiency and brightness. Desktop systems have, for years, supported sub-pixel rendering
to achieve higher spatial luminance resolution — particularly in font rendering. Though
similar solutions may be beneficial — patents permitting — for legacy, lower-resolution
devices, the computational costs for these solutions may not be justified. Alternative
layouts used in mobile devices often do not represent the full colour resolution at each
pixel; the perceptual image quality reduction is considered to be low compared with the
power savings.

Developers can take advantage of the reduced spatial resolution in some channels to
reduce the amount of graphical work required. Shaders and texture formats can be opti-
mised to generate only the representable amount of pixel resolution. The same rendering
performance advantage can be used in a more conventional display layout, at the cost of
reducing the display quality slightly.
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Figure 13.1: PenTile RGBG sub-pixel layout on an OLED display

13.3 Suit the application to the interface

It is tempting to take popular desktop or console software and attempt to port it directly
to a mobile device. The most obvious problem with this tends to be with interaction
methods — most mobile devices lack a usable keyboard or mouse, and gaming interaction
mechanisms — whether direct controllers or based on object tracking — do not translate
well. In contrast, touch interfaces are ubiquitous on mobile devices, and most products
offer a range of other sensors such as cameras, microphone, GPS, accelerometers and
gyroscopes. The pixel-perfect interface of a desktop machine is good for content creation,
but inconvenient to emulate in a touch screen.

The design of the graphics of an application must be tailored to the interaction mech-
anism, but also to the viewing experience. Mobile solutions — video eye-wear aside —
cannot provide the immersive experience of a cinema display or a large screen television;
this means that a first-person shooter game will always seem different on a tablet to the
TV experience, but mobile solutions offer natural interaction for augmented reality and
multi-touch solutions. Casual gaming has become ubiquitous, becoming the most popular
use of cell phones. There is less call for immersive detail, more for simple, easily-visible
content that can still be used when viewing conditions are poor and the player cannot
dedicate undivided attention to the experience. Mobile applications are also being used
by an increasing number of less technically-savvy users, who benefit from means of inter-
action that are simplistic and, in many cases, easy to see. This necessary change in style
has a corresponding effect on the rendering solution used.

Not that it is impossible to play a first-person shooter on a tablet — or a simple puzzle
game on a PC. But these are the exception, not the rule.
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14. APIs are changing

14.1 Historical APIs getting more flexible

Function innovations tend to happen in desktop hardware, not least because there is
competitive pressure exclusively on the graphics performance separate form the rest of the
system, and because it is easy to update driver software in desktop computers. Mobile
hardware is an inherent component of the system, and replacing the mobile GPU without
completely replacing the device is infeasible. Drivers on mobile systems can also take
longer to validate and update.

Mobile GPUs started out as extremely primitive devices, and their desktop equivalents
have had a large head start when it comes to capabilities. The APIs of mobile devices have
followed suit, being heavily cut down compared with desktop equivalents — although some
of the missing functionality has more to do with the removal of deprecated functionality
than with GPU abilities. While desktop GPUs still support more features than the latest
mobile GPUs, the gap has narrowed appreciably in recent generations. As more function-
ality transfers from the desktop graphics interfaces, the capabilities converge — even if,
as this course has discussed, the best way to use that functionality may differ. As more
features become available, it will be possible to support ever more advanced graphics in a
mobile form-factor — and, as ever, developers will find ways to push graphical techniques
beyond the expectations of the API designers.

14.2 Next generation APIs

While OpenGL ES has served the graphics industry well for years, there are some cases
where the API obstructs performance. Historically, OpenGL’s support for multi-threaded
operation has been rudimentary, with the result that almost all rendering operations take
place on the main rendering thread. High-level APIs are so effective at abstracting the
hardware that it can be hard for a driver to establish what the application wishes to
achieve. The optimisations in the hardware and driver can be broken when the system must
allow for application behaviour that has the possibility of producing incorrect rendering.
A GLES driver also has responsibility for its own memory allocation, which allows for
internal texture representations to be hidden, but also makes it hard for the user to alias
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memory use and to support texture streaming.
There has been a recent move to more explicit graphics APIs: Mantle, Metal, DirectX

12 and Vulkan. These allow high-overhead parts of rendering such as command buffer
generation and shader compilation to be processed when the user can afford this overhead,
and on a thread other than that responsible for geometry submission. They can also allow
much of this costly work to be reused. By being so explicit, less driver intelligence is needed,
greatly reducing the driver CPU cost in some cases. The cost of these APIs is that the
application must explicitly request the operations required during the rendering process,
which exposes the different paths required by different rendering hardware. The experience
may have benefits even to GLES programmers, since visibility of the operations performed
by the driver can give insight about unexplained overheads. While an application that
is completely limited by the performance of shading may see little benefit from a next-
generation API (although some allow improved management of multiple rendering passes
and therefore bandwidth reduction), it is easy for a GLES application to get tied up in
driver behaviour and not saturate the GPU.

The additional flexibility required by next generation code means that applications
written for these new APIs may be more verbose than GLES. Prototyping may be faster in
an older-style API; the new APIs likely require less effort to turn into a production-ready
optimised solution, since there is less need to reverse-engineer driver behaviour. There are
tasks that remain better-suited to GLES, but developers should not reject explicit APIs
in the belief that they are too complicated. Layers and utilities exist to simplify the use
of the new APIs, and game engines are leading adoption, so there may be ways to limit
the cost of support to applications. However, currently, GLES dominates the adoption of
mobile graphics APIs, and it should not be dismissed yet.
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15. The future

15.1 Hardware getting faster

While the power constraints on mobile GPUs are not going to disappear in the foresee-
able future, there is no reason to believe that the performance of mobile devices is going to
stop increasing — or that efficiency gains will not continue. This means graphics quality
will continue to increase. The ways to get the best performance from a mobile GPU may
well change over time as more techniques become available, but there will likely always be
a need to work around bandwidth limits.

For many years, desktop operating systems and productivity software expanded to
fill the increasing capabilities of CPUs. Relatively recently, we have reached the stage
where CPUs have become fast enough to manage the most typical things that people do
with them — this has in part been responsible for a reduction in profitability in the PC
market. The PC graphics market has long been driven by gaming, a market that has
also reduced somewhat with the rise of casual gaming. However, mobile GPU capabilities
still lag behind the requirements of application developers — mobile GPU performance
continues to grow, and application software continues to expand to use all the performance
available.

15.2 Caches getting bigger

One change that is likely as a consequence of the reduction in process size is the increase
in on-chip caches. To an extent, this change will negate some of the advice in this course
— it will become less necessary, to accept a small reduction in image quality in return for
better cache performance.

However, as scene complexity increases, the demands on caches are only likely to
increase. The onus is on GPU developers to find the best balance to meet user demands
— but it is up to the application developer to make the best use of the resources available
at any time.
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15.3 Shared address spaces

Current mobile demands make the only practical solution for memory access from the
GPU and CPU one which involves a shared interface. The address space flexibility of
desktop systems is also increasing, and APIs are likely to make better use of shared address
spaces in the future. This can only make it easier to reduce the overhead of communication
between the CPU and GPU.

15.4 Memory busses still limited

As computation performance increases, bandwidth has always proven to be an increas-
ing problem. Ever more clever solutions to this problem have been attempted over the
years, but there is no way to add more raw bandwidth to a system without using more
power and adding more cost to the device. Whatever hardware solutions are found, reduc-
ing the memory requirements and improving locality of reference will always be valuable
optimisations.

15.5 Are device resolutions levelling off?

For several years now, mobile device resolutions have been increasing, acting as a dif-
ferentiation factor. We have reached a point where the pixels are hard to see, and the
benefits of increasing resolution are becoming questionable, especially when the consid-
ered resolution does not fit a standard media content format. Ever increasing display
resolutions have a cost in display brightness, colour space, reliability, and the difficulty of
producing defect-free panels. Added to the computation cost of generating content for the
higher screen resolution, it seems that display resolution is unlikely to continue increasing
incrementally for the foreseeable future.

There is a tempting misconception that pixels should be visible. For rendering a
general-purpose scene, the pixels are only a representation of infinite-resolution geometry.
Ideally, pixels should be small enough to avoid being visible as square regions, but only
effective anti-aliasing can represent a fully continuous source. The transition point between
visible and invisible depends on the user and the viewing conditions, but there is no doubt
that the pixels on the latest displays are discretely visible to ever-fewer users. What
remains to be seen is when the market decides that pixels are small enough, and that
higher performance and better efficiency are more important.

15.6 Efficiency increases

Whatever the future brings, we can assume that GPU designers will continue to find new
solutions for managing the power requirements of their designs, while allowing performance
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to increase. The trick for the application developer is to ensure that applications can make
use of these solutions — just as the GPU vendors need to ensure that their hardware
optimisations are as applicable as possible to real world software. GPU design and driver
software makes increasingly intelligent attempts to reduce the overheads of rendering.
While the application author must avoid incurring unnecessary overheads, often the best
thing to do is to behave as simply as possible. The best performance comes from letting the
driver apply its optimisations: this is most likely to happen if the GPU vendors anticipated
what the user was going to do — behaving predictably and in line with common practice
— and if the rendering scheme is simple enough for the driver to optimise.

15.7 Is the desktop route the way to go?

Desktop graphics cards have mostly avoided tile-based rendering solutions. It is too
common to need to support a very large amount of geometry, particularly in the worksta-
tion market. As mobile scenes grow in complexity, one solution is to move to immediate
renderers even for the mobile market. This is certainly a solution to the needs for tes-
sellation and geometry shading in mobile APIs. Frame buffer access optimisations in
immediate renderers can partially compensate for the bandwidth advantage of a tiler, but
on current work loads, tiled renderers seem to have a current advantage. Whether this
remains true in the future remains to be seen — and depends heavily on what is to be
rendered.

15.8 Projections

Future innovations may not only happen in the design of the GPU. Much of what has
been suggested in this course is applicable to small displays, but there have already been
some attempts to incorporate pico-projectors into cell phones, giving the ability to fit
a very large display in a small device. Other solutions with flexible displays have been
researched, and there are emerging solutions for using remote, larger, displays with mobile
devices. Combined with the remote rendering solutions mentioned above, we may come
to live in a world where the data is mobile, but the display and the GPU is not.

51



16. Wrapping up

16.1 Bandwidth will always be constrained

In summary, mobile graphics is constrained, more than anything else, by bandwidth
limitations. More bandwidth means more power — worse battery life, more device heating
— and more cost. The best way to extract performance from a mobile GPU, therefore, is
to minimise the bandwidth requirements of the application.

16.2 Make maximum uses of local memory

External memory bandwidth — the RAM interface shared with the CPU — is the
most precious resource. Making best use of the on-chip frame buffer and caches — limited
though they may be — can have a big effect on performance. Mobile caches are smaller
than desktop GPUs, yet the penalty of missing the cache is greater.

16.3 Don’t go crazy with the geometry

Many mobile GPUs use tiled rendering. These architectures make efficient use of frame-
buffer bandwidth, but suffer increased overheads as geometry count increases compared
with the immediate-mode rendering common in desktop devices. The extent of this over-
head depends on what exactly is being rendered, but, as a general guideline, it helps to
find a way of producing an effect without resorting to increasing the triangle count.

16.4 Textures — size and locality

Textures can be the biggest consumer of caches and external memory access. Keeping
the textures small — in resolution and in format — can be the secret to staying within
the device’s limits. Texture bandwidth can sometimes be traded for additional shader
computation, in terms of filtering, colour format and preserving locality of reference. The
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large bandwidth available to desktop GPUs makes them much less sensitive to abuse
with large and incoherent textures; moving to a mobile requires more care to preserve
performance.

16.5 Desktop assumptions don’t apply

Mobile GPUs diverge more than desktop systems. A good optimisation on one system
may not apply, or may be actively detrimental, on another. Mobile hardware has more
restrictions than desktop, since any non-critical functionality costs space and power. Not
every desktop API feature is yet available on mobile. Modern desktop GPUs are designed
to be flexible and powerful.

Mobile GPUs are designed for absolute performance efficiency. Relying on more ad-
vanced or secure features can be a problem, even if they are implemented on some hard-
ware. Even the preferred way to write a shader may vary between mobile architectures.
Simpler solutions are more likely to be supported by the optimisations of hardware ven-
dors. Mobile hardware and APIs are evolving rapidly, and — so long as future-proofing is
considered — knowing the most efficient approach may depend on monitoring the latest
specifications.

16.6 Beauty fades — making it last

Implementing the highest quality graphics that can fit into current hardware can be
good for advertising, but might not be so good for the user. Getting close to the ideal
solution through approximation can be well worth a large performance gain. It can be
short-sighted to stop optimising once the desired frame rate is reached: further optimisa-
tion leads to important power savings and avoid thermal shut-down that saps performance.
If a slight reduction in image quality in the interests of power saving seems unpalatable,
consider how dated any application looks when the next year’s cutting edge software ships;
however, a game that offers hours of game play will still have the same selling point several
years later.

16.7 Working with the mobile screen

The very high resolution of mobile screens provides advantages to display quality and
allows short-cuts to be made. Mobile screens are rarely viewed under perfect conditions.
Even when they are, the resolution is high enough that the user’s eyesight may not be
able to make out every detail. Producing the per-pixel quality expected on a desktop
system can be unnecessary on a mobile device — physical limitations can stop the viewer
from perceiving everything that is rendered, so approximations can be made. Some display
hardware already makes similar approximations with resolution in the interests of increased
power consumption and perceived quality — approximations that can can be mirrored in
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software for further benefits. The different means of interaction with mobile devices means
that simpler graphics can be more suitable and preferable.

16.8 Offering the best experience

As graphics programmers and artists, it is natural to want to produce the highest pos-
sible image quality. Enjoyable though this can be, that is not actually what the customer
is likely to want. Mobile gaming is not cinematography: spending less effort producing an
affordable product and producing imagery that is “good enough” can be far more welcome,
especially to the general populace less trained in spotting graphical perfection than this
audience.

With the latest high-end mobile GPUs and efficient programming techniques, it is
possible to achieve very high quality rendering effects. However, doing so may result in
a phone which becomes uncomfortably warm to touch and which empties its battery in
minutes. While users appreciate high quality graphics, they also appreciate more time us-
ing their devices. High-quality imagery does not have to mean photo-realism and complex
shaders.

Finishing a SIGGRAPH course by telling the attendees not to produce the most
immersive graphical experience that the hardware can achieve seems the wrong message.
Instead, think of it this way: high quality graphics costs. It costs engineering time, it costs
artist time, it costs power and it costs silicon area. Our job is to give the user a bargain.
And we should all have a pay rise.
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