
DEFERRED SHADING TECHNIQUES IN THE UNITY
UNIVERSAL RENDER PIPELINE

Kay Chang
(Unity Technologies)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 2

RECORDING POLICY
It is important to recognize that many of the words, images, sounds, objects, and

technologies presented at SIGGRAPH are protected by copyrights or patents. They are
owned by the people who created them. Please respect their intellectual-property rights
by refraining from making recordings from your device or taking screenshots. If you are

interested in the content, feel free to reach out to the contributor or visit the ACM
SIGGRAPH Digital library after the event, where the proceedings will be made available.

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 3

KAY CHANG
SENIOR SOFTWARE ENGINEER, GRAPHICS
Vancouver (Canada) / Unity Technologies

In the video games industry for +14 years
- Shipped games on all major consoles
- Specialised in graphics rendering

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

AGENDA

4

• The Universal Render Pipeline?

• Platforms considerations

• Stencil-based deferred shading

• Tiled-based deferred shading

• Performance results

• Moving forward

https://github.com/Verasl/BoatAttack

https://github.com/Verasl/BoatAttack
https://github.com/Verasl/BoatAttack

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

THE UNIVERSAL RENDER PIPELINE

5

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

THE UNIVERSAL RENDER PIPELINE

6

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

UNIVERSAL RENDER PIPELINE

7

• Historically, Unity rendering is performed via a built-in rendering pipeline (opaque C++ code)

• Scriptable Render Pipeline (SRP) is a C# API for writing render pipelines

• Unity Out-of-the-box implementations:

– High-Definition Render Pipeline (HDRP)

– Universal Render Pipeline (URP)

• URP is the future Unity replacement for the built-in render pipeline

• Mostly everything in C# land, users have more leverage

customising the render pipeline to game requirements

• Hosted on GitHub to let users access

latest development:

https://github.com/Unity-Technologies/Graphics

https://github.com/Unity-Technologies/Graphics
https://github.com/Unity-Technologies/Graphics

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

UNIVERSAL RENDER PIPELINE

8

• To reach parity with built-in pipeline, URP needs:

– Deferred shading

– Decals

– Point lights shadows

– Advanced baked lighting modes

– Advanced reflection probes

– Separate light layers

– etc.

• Unity aiming to reach feature parity in 2021

Working on this next …

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

UNIVERSAL RENDER PIPELINE

9

• Deferred shading is a broad technique, several possible implementations:
– Stencil: Render and shade light shapes using stencil buffer (traditional)

– Tiled based deferred shading (software): classify lights into screen space tiles and render tiles using compute shaders
(popular for desktop GPUs)

• URP must run on a large set of platforms
– low-end mobile devices

– high-end desktops / home consoles

– Everything in between!

• Must reach good performance on all platforms
– No solutions to fit them all

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PLATFORM CONSIDERATIONS

10

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PLATFORM CONSIDERATIONS

11

What are our platforms constraints?

• Mobile GPUs:

– Often have a tiled-based deferred shading architecture (hardware)

– Low fill-rate

– Expensive ALUs

– Overall limited capabilities

– Limited Multiple Render Target Count

– Limited uniform buffer size for best performance
Photo by Obi Onyeador on Unsplash

https://unsplash.com/@thenewmalcolm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/phones?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@thenewmalcolm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/phones?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PLATFORM CONSIDERATIONS

12

What are our platforms constraints?

• Desktop GPUs (Desktop PC, home consoles):

– Cheap ALUs

– fast dynamic branching

– Fast memory access

– Efficient compute pipes / async compute pipes

– Overall very capable
Photo by Steven Binotto on Unsplash

https://unsplash.com/@stevenbinotto?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pc-gaming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@stevenbinotto?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pc-gaming?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PLATFORM CONSIDERATIONS

13

Main takeaways

• Prefer fragment shaders to compute shaders

– Compute shaders are as fast as fragment shaders only on desktop/home consoles

• Prefer uniform buffers to structured buffers/SSBO
– Uniform buffers are better cached even on most modern GPUs

• Problem: uniform buffers are limited to 64KiB
– May need to split draw calls and extra management of buffers

• Use half types in shaders
– Decrease register pressure on GPUs that support it

33% improvement by moving light data from
structured buffer to uniform buffer on Nvidia

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 14

STENCIL-BASED DEFERRED SHADING

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

15

• Algorithm overview

– Render g-buffer to store all material properties

– Light shapes are rendered as convex geometry

– Spheres for point lights

– Capped rounded cones for spot lights

– Stencil buffer is used to mask fragments inside light shapes for rendering

– Each light shape is rendered twice
– First time to set up stencil mask
– Second time to to perform actual shading by sampling g-buffer

and clear the stencil mask

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

16

Example stencil rendering

View from above

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

17

Example stencil rendering

View from above

1st light stencil mask

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

18

Example stencil rendering

View from above

1st light

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

19

Example stencil rendering

View from above

2nd light stencil mask

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

20

Example stencil rendering

View from above

2nd light

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

21

Example stencil rendering

View from above

3rd light stencil mask

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

22

Example stencil rendering

View from above

3rd light

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

23

Example stencil rendering

View from above

4th light stencil mask

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

24

Example stencil rendering

View from above

4th light

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

25

• Pros

– Simple shaders run much faster

– Most reasonable GPUs can support it (very old technique)

– Now can take advantage of mobile-GPU hardware tiled architectures.

• Cons

– Many draw calls and render state changes still limit how many lights can be rendered

– Memory bandwidth intensive (repeated fetch of g-buffer textures).

Render Pass API on Vulkan,

ImageBlocks on Metal

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

26

Format R G B A
R8G8B8A8 Albedo Flags
R8G8B8A8 Specular Unused
R8G8B8A8 Normal Smoothness
R11G11B12 Emissive/baked lighting

R32F Depth as color

D24S8 Depth Stencil

Our G-buffer layout

Optional octahedron encoding for
normals, but always 24 bits

Optional for render-pass

Stencil stores some material

()

Light layers will requires an extra render-
target, as well as motion vectors!

Unity supports metallic and specular
workflow for materials, forcing us to

consume 3 floats for specular, instead of 1!

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

27

Albedo/Flags Specular Normal Emissive/baked

Depth

Stencil

Final result
(after transparent pass)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

28

Spot light shape
degenerate to hemisphere Point light shape

Geometric shapes for lights are tightly fitted

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

STENCIL-BASED DEFERRED SHADING

29

Render-Pass API

• Mobile GPUs with tiled-based architecture can avoid the cost refetching g-buffer textures for each light
shape by caching them into on-tile memory.

• Depth must be rendered as extra colour render-target

• We have an implementation for it, but not ready for release yet

• Driver issues on older Vulkan drivers on some mobile devices

• Release pushed back to 2021

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 30

TILED-BASED DEFERRED SHADING
(NOT GPU ARCHITECTURE)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

31

• Algorithm overview

– Same name but different from GPU tiled-based architecture

– Conceptually “re-use same principles” but without hardware support

– Since done in “software”, can be further improved in many ways

– Most implementations use compute shaders

– Very popular with desktop GPUs

It tries to minimise memory bandwidth
by fetching g-buffer textures only once

for shading

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

32

• Algorithm overview (continue)

– Render g-buffer as for stencil method (same layout)

– Partition the screen into a grid of tiles (8x8 pixels or 16x16 pixels)

– Use compute shaders to build for each tile the list of lights that affect it

– (a) Each tile is extruded in 3D as a tight view frustum

– (b) Check if a light intersects a given tile frustum
 (depth range of intersected parts must be known too)

– (c) Check if a light intersects any scene geometry inside the tile

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

33

Camera

Near plane

(a)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

34

• Algorithm overview (continue)

– (b) Check if a light intersects a given tile frustum

– Intersection between light shapes and tight frustums can be tricky to calculate

– naive intersection tests will trigger many false negatives

– Especially for spot lights (capped rounded cone shape)

Knowing the tile coordinate and the spot light parameters,
how to calculate the depth range in view space?

(b)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

35

• Algorithm overview (continue)

– (c) Check if a light intersects any scene geometry inside the tile

• Scene geometry inside a tile is inferred by sampling the depth buffer

• Simply a disjoint collection of depth values (16x16 pixels tile gives 256 depth values)

• Can “compress” depth values into a bit mask (uint32_t)

• Can also compress all lights depth ranges into a bit mask (uint32_t)

• Intersection between lights and geometry becomes
a bit-wise AND operation (2.5D culling)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

36

(c)

07152331
0x7CF0FFFF <=

Tile view frustum

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

37

• Our approach:

– Cull lights against screen-space tiles without depth-information

– Allow the culling to be done on GPU or CPU

– Further trim light lists using scene depth-information just before shading

– The tiles are not rendered using compute shaders but using fragment shaders

– Draw instanced quads using an indirect draw call

– A potential future path without compute shaders (very experimental)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU HARDWARE)

38

Example tile rendering

View from above

Generated tiles

Tiles are rendered as triangles or quad topology if
supported. We did not see performance degradation

from double shading on common triangle edge.

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU HARDWARE)

39

Example tile rendering

View from above

Heat map (number of lights per tile)

In this simple example, tiles have 1 or 2
lights per list, hard maximum is usually
32 or 64 lights per tiles.

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU HARDWARE)

40

Example tile rendering

View from above

Final result

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU HARDWARE)

41

The tile data structures are stored into
StructuredBuffer/SSBO of uints.
No benefit in storing them in uniform buffer
because no repeated access pattern.

Light list indices can be up to 32-64 lights.
In this simple case we only see up to 2 overlapping
lights.

Visualising the tiles

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU HARDWARE)

42

G-buffer pass Lighting passTile-Depth-Info
pass

Light culling
pass

Trim-light-list
pass

G-buffer textures Downsampled
Depth-info per tile

Indirect-Argument
buffer

light lists
per tile

Trimmed
light lists
per tiles

Can run on async pipe
if available

Compute

Compute/CPU

Graphics Graphics Graphics

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

43

• Pros

– Very fast (on desktop GPUs)

– Low memory bandwidth: g-buffer is fetched only once for shading

– Light culling can be done on async compute pipes

– Can further optimise shader used for shading tiles depending material types in the tile, …

– Open up path to forward+ for forward passes (ex: transparent pass)

– Open up path to Clustered shading (3D grid instead of 2D grid)

• Cons

– Not fast (on mobile GPUs)

– Reliable hardware support?

Same advantage as GPU tiled-based
architecture and Render pass API.
But avoid repeated cost for g-buffer
decoding …

Compute shaders may rely synchronisation
mechanisms (memory barriers), atomics, group
shared memory, wave-intrinsics, etc.

Forward-only pass is used for special
material types (clear coat, hair, skin. …)

Material classification:
allow skipping complex
shader permutations per tile

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

TILED-BASED DEFERRED SHADING (NOT GPU ARCHITECTURE)

44

• Experimental work: could we move the initial light culling pass on the CPU?

– Possible because no dependencies with GPU at this stage

– Not entirely novel, past work offloaded some processing on CPU too

– With Unity Job System and Burst compiler we run 25%-50% slower than the compute shaders

– Our Data layout not Structure-of-Array yet (SoA), so potential for more speed-up

– Ultimately depends on CPU and GPU characteristics

– More work needed!

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 45

PERFORMANCE RESULTS

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PERFORMANCE RESULTS

46

1 main directional light, 64 point lights, baked lighting

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PERFORMANCE RESULTS

47

0ms

1ms

2ms

3ms

4ms

5ms

6ms

7ms

Built-In deferred URP Stencil URP Tile (Compute)

1.27
3.19

2.99

0.09 0.13 0.2

1.241.24
1.12

0.460.461.16

Other gbuffer depth-info light culling trim light lists shading

Nvidia Gfx Geforce 1050
1920x1080

1 main directional light, 64 point lights, baked
lighting

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PERFORMANCE RESULTS

48

0ms

1ms

2ms

3ms

4ms

5ms

6ms

7ms

Built-In deferred URP Stencil URP Tile (Compute)

1.62

4.57
3.98

0.06 0.177
 0.256

0.8440.844

0.791

0.460.46
1.53

Other gbuffer depth-info light culling trim light lists shading

AMD Radeon Pro 460
1920x1080

1 main directional light, 64 point lights, baked
lighting

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PERFORMANCE RESULTS

49

iPhone 8 A11 Bionic
1334x750

0ms

5ms

10ms

15ms

20ms

25ms

Built-In deferred URP Stencil URP Tile (Compute)

6.74

6.84

7.83

0.335
2.35
0.693

2.412.41
1.63

1.551.55
4.43

Other gbuffer depth-info light culling trim light lists shading

1 main directional light, 64 point lights, baked
lighting

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

PERFORMANCE RESULTS

50

0ms

5ms

10ms

15ms

20ms

25ms

Built-In Deferred URP Stencil URP Tile (Compute)

24.16
19.26

23.43

avg frame time

Galaxy S9 Mali-G72 MP18
2220x1080

1 main directional light, 64 point lights, baked
lighting

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 51

MOVING FORWARD

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

MOVING FORWARD

52

• Stencil solution is mature and stable on all platforms, shipping soon …

• Tiled-based deferred solution need to be tested on more platforms because it relies on advanced compute
shader features

• Experimental CPU solution is still in R&D

• Need to add async pipes support on platforms where it is available

• Clustered shading implementation

• Forward+ for forward passes

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

REFERENCES

53

• https://www.gamedevs.org/uploads/rendering-in-battlefield3.pdf

• http://twvideo01.ubm-us.net/o1/vault/gdc2011/slides/Christina_Coffin_Programming_SPU_Based_Deferred.pdf

• http://www.humus.name/Articles/PracticalClusteredShading.pdf

• https://wickedengine.net/2018/01/10/optimizing-tile-based-light-culling/

• https://bartwronski.com/2017/04/13/cull-that-cone/

• https://www.iquilezles.org/www/articles/ellipses/ellipses.htm

• http://lousodrome.net/blog/light/2017/01/03/intersection-of-a-ray-and-a-cone/

https://www.gamedevs.org/uploads/rendering-in-battlefield3.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2011/slides/Christina_Coffin_Programming_SPU_Based_Deferred.pdf
http://www.humus.name/Articles/PracticalClusteredShading.pdf
https://wickedengine.net/2018/01/10/optimizing-tile-based-light-culling/
https://bartwronski.com/2017/04/13/cull-that-cone/
https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
http://lousodrome.net/blog/light/2017/01/03/intersection-of-a-ray-and-a-cone/
https://www.gamedevs.org/uploads/rendering-in-battlefield3.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2011/slides/Christina_Coffin_Programming_SPU_Based_Deferred.pdf
http://www.humus.name/Articles/PracticalClusteredShading.pdf
https://wickedengine.net/2018/01/10/optimizing-tile-based-light-culling/
https://bartwronski.com/2017/04/13/cull-that-cone/
https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
http://lousodrome.net/blog/light/2017/01/03/intersection-of-a-ray-and-a-cone/

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

QUESTIONS?

54

THANK YOU!

