
MOBILE GRAPHICS 101
Jesse Barker (Unity)

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

A little background on myself:
• Many years of low-level GPU software (drivers, advance feature development)
• Decade of mobile development
• Vulkan working group
• Lots of SIGGRAPH

1

MOBILE GRAPHICS 101

Agenda

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

Defining Mobile

Thermals

Memory

GPUs

Tools

We’re going to start off with a quick definition of what we mean by the term
“mobile” just for a baseline for what follows.
Following that, we will look at a few of the key factors that constrain (not just)
graphics execution on these devices/platforms.
Then we will have a high-level overview of GPU styles and why mobiles tend to favor
a particular approach (you may already know the answer by then).
Finally, we’ll touch on a few tips and gotchas when analyzing the software you are
running on these devices.

2

DEFINING MOBILE

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 3

Mobile*

• Passive cooling

• Very low power (5W whole device)

• Battery power supply

• Shared/unified memory architecture

* May be embedded in a non-mobile setting

Non-mobile

• Active cooling

• Higher power (up to 250W for GPU)

• Tethered power supply

• Dedicated use memory (mostly)

I’m avoiding the ”mobile vs desktop” high-level description here; we’re talking about
a phone-like device. (Anticipating questions like “what about
laptops/ultraportables/chromebooks”).
These are endpoints of a spectrum, and there are of course things that fall in
between.
The landscape is evolving all the time.

Mobile is about thermals, power, and, well, size (your favorite PC graphics card chip is
several times the size of any mobile SoC).
A device may use a “mobile” SoC, but if it has a tethered power supply, a fan (or even
liquid cooling), I would argue it’s no longer mobile,
though many of the considerations for programming them optimally still apply (GPU
is the same, but some embedded environments disallow virtual memory or
dynamically allocated memory, for example).

3

THERMALS

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 4

• Heat is a by-product of device
operation

• Computers do not like heat

Every bit of active silicon in the SoC, as well as other active devices on the system
board of the device generates heat. Computers don’t like heat (they shut down
and/or melt).
Phones and tablets are limited to passive cooling (whatever heat dissipation the
device form factor allows inherently).
Tethered systems are able to run fans and even liquid cooling systems to address the
thermal limits of the hardware.
Mobile devices must constantly monitor thermal conditions, and adjust the voltage
and frequency of the portions of the chips that are too hot or drawing too much
power.
This can have a huge impact on the behavior and performance of software on the
device.
We all know that CPUs and GPUs (and other execution units in the system) draw
power to operate, but the real culprit is…

4

MEMORY MAKES THE WORLD GO AROUND

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 5

RAM

Remember all of those “devices” inside an SoC that we talked about during the
introduction? All of those require memory to be usable.

• Talking about memory is confusing. Quantity is significant, but tells you nothing
about how useful that memory is

• (e.g., what if you had 64GB of RAM, but only had an 8-bit bus running at
1MHz to access it).

• (I would argue) Memory is the single most expensive resource on a mobile device,
including lighting up the display (dynamic memory must be constantly refreshed to
preserve its contents).

• Memory configuration varies greatly based on system architecture (Dedicated,
shared, split – other special cases as we’ll see)

• Systems may employ specialized memory types for specific use cases (e.g., GDDR
memory for GPUs, and LPDDR memory for mobile).

5

(VERY) ROUGH COMPARISON*

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 6

Mobile

• Shared RAM (~8GB)

• Shared bandwidth
(~30GB/s)

• (Both of these might be
split between CPU/GPU)

Console

• Shared RAM (~16GB)

• Shared bandwidth
(~500GB/s)

• (Both of these might be
split between CPU/GPU)

“PC”

• Dedicated CPU RAM
(~64 GB)

• Dedicated GPU RAM (~8
GB)

• Dedicated GPU
bandwidth (~500GB/s)

• (Laptop configs vary)

*Beware of specsmanship

• Note: These numbers don’t describe a single device in each category, but
represent a rough overview of latest generation specs from SoC specifications,
GPU vendor specifications, or review sites like “Tom’s Hardware” or “AnandTech”
(these latter will show more context by running benchmark workloads on a variety
of devices)

• E.g. https://www.tomshardware.com/features/playstation-5-vs-xbox-series-x

• Discrete GPUs targeted at tethered systems (PCs, Macs, etc.) have lots of
local/dedicated (on the GPU side of the bus) RAM with a huge pipe (lots of
bandwidth) connecting the GPU with the memory.

• Mobile GPUs share a much smaller amount of memory with the rest of the System
on a Chip (SoC) – a unified memory architecture - via the same pipe (much smaller
than the dedicated pipe that discrete GPUs enjoy).

• With respect to bandwidth, there is typically at least an order of magnitude (and
often much greater) difference between these devices.

• Raw hardware specifications aside, the available memory footprint and bandwidth
are significantly reduced at runtime (power, thermals, other system overhead, and
even the type of memory chips used).

6

HOW GPUS WORK

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 7

• Given a scene

• Two basic approaches *

– Immediate Mode Rendering

– Tile-Based Rendering

* There are many different ways to
implement either of these

We’re not doing a deep dive here, so I won’t be covering low-level implementation
details for a specific vendor architecture.

Every vendor’s hardware is different, and indeed, each generation/architecture is
likely different from its predecessor (or even a ”sibling” within a generation).

This is intended to give you a basic grounding in how GPUs work.

7

BASIC IMR GPU

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 8

GPU

Vertex Shader Rasterizer

Vertex Data

Fragment Shader

Fragment Data Render TargetsVertex Shader Output

This is a very over simplified diagram of what an immediate mode rendering GPU
looks like. (Green block GPU silicon, blue block RAM)
(if you want more detail of what happens inside each block, your favorite PC GPU
vendor will have better breakdowns of how they process low-level work)

This type of GPU ”simply” (there are lots of hardware optimizations that make this
not so simple):
- fetches primitive (typically triangles) data from a buffer
- transforms them into screen space (additional vertex shader output may go out to

RAM, but may have an on-chip buffer)
- rasterizes (interpolates the screen-space vertex data) them
- shades all of the fragments/pixels that the rasterizer spits out (including any

blending, etc. – “fragment data” contains textures, and other buffers containing per-
fragment information)
Plenty of opportunities for the GPU to discard work, but this is _very_ memory
intensive

8

WHAT IS TILING?

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 9

• Dividing the screen into tiles

When we talk about a tile-based rendering GPU, this is what we mean. Each render
target is divided into a rectangular grid of tiles.
Now let’s look at how that happens and why it is so important for mobile GPUs.

9

BASIC TILE-BASED GPU

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 10

GPU

Vertex Shader Tiling Unit Rasterizer

Vertex Data
Tile List & Vertex Shader

Output

Fragment Shader

Tile Memory

Fragment Data Render Targets

This is a very simplified diagram of a tile-based GPU (again, how this is all done is very
vendor-specific). (Green block GPU silicon, blue block RAM)
You may also hear “tile-based deferred renderer” or “tile-based immediate renderer”.
These fall into the
category of variations on a theme, and refer to implementation details that may or
may not allow a GPU to avoid work.

You’ll notice some similarity here to the IMR diagram (I made the diagrams that way
on purpose ☺). This type of GPU “simply”:
- Fetches primitives from a buffer
- Transforms them into screen space
- (Tiling Unit) Sorts them into ”bins” (one bin per “tile” of screen space)

- This is the key: all scene/frame data is processed this way before we continue
down the pipeline.
- Once all of the geometry has been binned, each bin, the bin is rasterized and sent

off for fragment shading
- The work for each bin (including overdraw and depth testing) is performed in very

fast on-chip memory, the results of which are finally written out to RAM
Note about the “Tile Memory” block here:

10

it is typically large enough to store multiple multisampled render targets (the size of
the tile is adjusted to account for this)
This means that the only memory that needs to be allocated is the single-sample
color output

– MSAA color, depth, and stencil are typically not backed by RAM on these devices
(Yay, big memory win!).
Other possible optimizations for such GPUs:
- Splitting parameter interpolation from position transform (less work in vertex

shader)
- Forward pixel kill (remove fragments from the queue based on “early Z” tests –

reduces number of times each fragment is shaded)
- Hidden surface removal (similar, also based on “early Z” tests, but never issues the

fragment rather than killing it after)
I mention these here as they are hardware optimizations that you have no control
over (we’ll talk about software optimization next)

10

DEBUGGING & OPTIMIZATION

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 11

• Mobile considerations:

– Texture Compression

– Data Types

– Screen resolution

Platform & vendor tools are your friend. Game development tools (like the Unity
timeline profiler seen here) can show you a lot if you’re using them, but they have
their limitations being fundamentally cross-platform.
There are also platform specific tools, as well as tools from GPU vendors that may
show you a deeper view of your workloads, and you should familiarize yourself with
them.

High-level optimizations:

Compact texture encodings are your friend. Even if you are already using compact
representations for texture data
(RGBM light maps, octahedral normal maps), you want to compress them if possible.
Bandwidth savings can be huge.
Downside is cross-platform availability (ETC/ETC2 pretty universal, ASTC is getting
there and also includes HDR support).

Use fp16 (as well as lower precision integer representations) where possible both for
shader input/output (bandwidth), as well as for operands (ALU performance often 2x
fp32).

11

Reduced precision comes with some drawbacks like limited texture addressability and
results like NaNs, so these optimizations must be carefully validated
(debug options like shaders with NaN elimination can help).

(Almost) Never render at native device resolution (you are outputting to a “small”,
probably smudged screen and you won’t notice the difference).
Some devices have a small enough native resolution, but if you are rendering at
QHD+, you are asking way too much out of your CPU, GPU, and memory system.
Render at a fractional resolution (testing to see what looks acceptable), and upscale
and composite with a full resolution UI.

Important note when analyzing and optimizing graphics applications on tile-based
GPUs:
- Per-draw statistics are nearly impossible due to the way the draws are processed

(as we’ve just seen).
- Some vendor tools help with this, but those can be synthetic approximations

(depending on whether the replay replicates the active power/clock state from the
capture).
- Combine live timeline analysis with frame/shader replay debugging to validate that

optimizations are actually helpful.

11

THANKS!

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D . 12

12

