HACKER NIGHTMARES

GIVING HACKERS A HEADACHE
WITH EXPLOIT MITIGATIONS

By Maria Markstedter

Arm Research Summit 2020

Security Researcher

Mobile and loT security, with
focus on exploit development.

CEO of Azeria Labs

Providing loT and Mobile
security services and trainings.

Arm Innovator

Member of the Arm Innovator
program sinceits inception.

Formal Education

Bachelor’s degree in IT Security.
Master’s in Enterprise Security.

Collaboration with Arm

Ongoing collaboration with Arm on
research and developer education.

Forbes 30 under 30

List member of Forbes 30 under

M A R I A M A R K S T E D T E R 30in technology, Europe, 2018.

AZERIA

Security researchers and founder of Azeria Labs, working with
large tech companies and law-enforcement agencies on projects
surrounding loT and mobile security. Interests include reverse
engineering Arm-based devices, security research, and exploit
development for mobile and loT.

y Azeria 4 g:;f:la'-:s"s‘ Curr.ently. writing two boqks on Arm Assembly _anc! Reverse
Engineering, and Vulnerability Discovery and Exploit Mitigations.

Website: http://azeria-labs.com/

Book updates Mailing list: https://arm-exploitation.com/

Email: contact@azeria-labs.com

http://azeria-labs.com/
https://arm-exploitation.com/

|OT DEVICES
GROWTH

How many loT deviceswill be connected
to the internet by 2030¢

Some say 120 bilion, othersay 1 ftrilion. In
any case, the numberis BIG.

LY
CORTEX-A | CORTEX-R | CORTEX-M

ARM PROCESSORS
AUTOMOTIVE

Modern cars are equipped with Arm processor
classes used for components such as Powertrain,
Vision ADAS, Navigation and Infotainment, and
Autonomousdriving.

Arm Cortex-A

Arm Cortex-R

Arm Cortex-M

High performance

Optimized for rich
Operating Systems and
hypervisors

Optimized for high
performance

Hard real-time
deterministic applications
and RTOS

Smallest area and lowest
power

Optimized for discrete
processing and
microcontrollers

ADAS Vision
Autonomous
VI

Digital Cockpit

Connectivity

Autonomous
ADAS radar
Connectivity
Powertrain

Chassis

Body electronics
Gateway
SoC management

Sensors

ARM PROCESSORS
MOBILE

Camera Sensor Hub
Cortex-M Cortex-M

Touchscreen &

Sensor hub Power Management
Cortex-A Cortex-M
Cortex-M

Apps Processor
Flash Controller

Cortex-A
Cortex-M Cortex-M
Mali-GPU
2G/3G/4G/5G GPS
Cortex-A Cortex-M
Cortex-M
Cortex-R
WiEi Bluetooth
1 Cortex-M
Cortex-M
Cortex-R
SIM
SecureCore

|IOT ATTACKS

IN THE WILD

Microsoft: Russian state hackers are using loT
devices to breach enterprise networks

Microsoft said it detected Strontium (APT28) targeting VoIP phones, printers, and video decoders.

. By Catalin Cimpanu for Zero Day | August 5, 2019 -- 18:30 GMT (19:30
f In L4 BST) | Toplc: Security

MORE FROM CATALIN CIMPANU

Securny

siack Hatana DEF cof - Article by zdnet

CYBER-ESPIONAGE GROUPS INCREASINGLY USING 10T DEVICES

of tens of thousands of home routers using the VPNFilter malware.

of the UEFA Champions League final that was going to be held in Kyiv, Ukraine that year.

Strontium going after loT devices isn't a novel tactic. The same group previously created a botnet
Experts believed Strontium was preparing to use the botnet to launch DDoS attacks on the night

But besides Strontium, other state-sponsored groups have also started targeting lol devices, and

primarly routers. Examples include the LuckyMouse, Inception Framewaork, and Slingshot groups.
N\

Microsoft said hackers used the compromised loT devices as an entry point into their targets'

internal networks, where they'd scan for other vulnerable systems to expand this initial foothold.

"After gaining access to each of the ol devices, the actor ran tepdump to sniff network traffic on

local subnets," Microsoft said.

"They were also seen enumerating administrative groups to attempt further exploitation. As the
actor moved from one device to another, they would drop a simple shell script to establish
persistence on the network which allowed extended access to continue hunting," the OS maker

added.

Using loT to hide behind proxies

Inception is continuing to use chains of infected routers to act as proxies and mask communications
between the attackers and the cloud service providers they use. Certain router manufacturers have UPnP
listening on WAN as a default configuration. Akamai research has found that there are 765,000 devices
vulnerable to this attack. These routers are hijacked by Inception and configured to forward traffic from one
port to another host on the internet. Abuse of this service requires no custom malware to be injected on the
routers and can be used at scale very easily. Inception strings chains of these routers together to create

multiple proxies to hide behind.

Symantec: Inception Framework

This paper in a nutshell:

Slingshot is a new, previously unknown cyber-espionage platform which rivals Project Sauron
and Regin in complexity

Slingshot has been active since at least 2012 until February 2018

We observed almost one hundred Slingshot victims, mainly in the Middle East and Africa

The attackers exploited an unknown vulnerability in Mikrotik routers as an infection vector

Kaspersky: The Slingshot APT

https://s3-eu-west-1.amazonaws.com/khub-media/wp-content/uploads/sites/43/2018/03/09133534/The-Slingshot-APT_report_ENG_final.pdf
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/inception-framework-hiding-behind-proxies
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/

“ WIRERE

SACKONANNEL

What We Know About Friday's Massive East Coast Internet

SUSINESS CULTURE GEAR 1DEAS

What We Know About
Friday's Massive East
Coast Internet Outage

MIRAI
HNEVERFORGET

DDoS attack on Dyn

October2016

Attack on DNS provider resulted in downtime of high-profile
websites, including GitHub, Netflix, Reddit, Twitter, PayPal, AWS.

1TB persecond DDoS

ROUTERS

CAMERAS / DVR

(@ UNKNOWN / OTHER

MIRAI VARIANTS

12 DECEMBER 2017 18 JANUARY 2018 MARCH 2018 EARLY JULY 2018
. . Successor of Mirai New variant "OMG“ with At least thirteen versions
gztac;/ni:zrbaa%:ixﬁggégg designed to hijack added configurations to actively infecting Linux
router. Botnet as a Service Cryptocurrency mining F“tm vulnerable loT devices gOT"mCIUd'Itnth%anmld
1 i 0 erat|ons INTO prOXy servers. evices Wi on
S15k for 600k devices with p e dibenih

up to 700GBps

14 JANUARY 2018 26 JANUARY 2018 MAY /JUNE 2018 END OF 2018

] New variants which New variant “Wicked” Variant “Miori”, spreads via
rONceev;/S\(/)arrslint %ﬁ?xgﬁ/f weaponizes D-Link router added at least three new RCE in ThinkPHP. New
P MIPS sgpP ’ PCI exploit to enlist further exploits, including Netgear variantsin 2019 still target
pudeley el vulnerable loT devices. routers and CCTV-DVRs. this vulnerability.

ARC, Argonaut RISC

ARM RESEARCH SUMMIT 2020 | KEYNOTE 9 AZERIA LABS | MARIA MARKSTEDTER

W Read on Twitter

“ the cybergibbons
' @cybergibbons
L f

& <> I [Bookmark ” Save as PDF I

I'd like to tweet a series of findings that are typical for an
embedded device, in ascending order of severity. This could
be any device, but it's fairly typical for a Linux-based loT

product.

Shout-out to Andrew Tierney (@cybergibbons)

Link to Tweet thread:
https://threadreaderapp.com/thread/23182617100372377 6.html

ARE YOU A
LOW HANGING FRUIT?

Even the most trivial and well-known security measures are being
neglected by loT vendors. Andrew Tieney, researcher at Pen Test
Partners, listed the most common issues he encounters in
embedded devices.

In this talk, we will look at the relationship between exploit
mitigations and the use of unsafe functions.

10

Out-of-date CA bundle - lots of devices have a CA bundle from 2012 or before.
This means that many certs are out-of-date and there are some no longer trusted

CAs. Developers will switch off cert validation as a result.

Device lacks secure storage - the SoC used by the device has no provision to
securely store keys or confidential material. An attacker with physical access can

recover keys, certificates, hashes, and passwords.

Factory reset not correctly implemented - either configuration (such as user's
SSID/PSK), authentication information (certificates etc.) or data (stored videos) are

not deleted or renewed when reset.

Encryption implementation issues - a custom protocol used by the device does
not implement crypto correctly. Examples - encrypt without MAC, hardcoded IV,

weak key generation.

System not mimimised - the system is running services and processes that aren't
used. It's common to find a web UI running on a system, but undocumented and

useless to consumers.

Serial consoles enabled - either raw serial or USB serial is enabled, allowing

either the bootloader, a login prompt, or a unprotected shell to be accessed.

WiFi connection process exposes SSID/PSK - it's very common for devices to use
a WiFi AP or BLE to allow the app to communicate the user's SSID/PSK for
connection. Often in the plain. Attacker needs proximity physically.

Firmware not signed - this allows someone to create malicious firmware and
deploy it to devices. Firmware not encrypted - this makes it much easier to examine

firmware and find issues.

Busybox not minimised - busybox has been built with every single tool possible,

providing a rich set of tools for an attacker to use.

Root user allowed to login - the root user either has no password, or a hardcoded

password. Another vulnerability will allow them to login and use the system. |

Compile time hardening not used. PIE/NX/ASLR/RELRO/Fortify haven't been
used. They make exploiting buffer overflows harder.

Unsafe functions used - strepy/sprintf/gets are used heavily in binaries found on

the system. These are closely associated with buffer overflow-tastic systems.

All processes run as root - no principle of least privilege followed. Lots of devices

could do this, but don't. No need to privesc when compromised.

14. Device does not validate SSL certificates - the HTTPS communications used by

the device can be man-in-the-middled by an attacker. Can lead to serious

compromise, especially if firmware updates delivered by this mechanism.

CONCLUSION: The device and system can't be immediately compromised. But in
the event of another vulnerability being found, there is little stopping an attacker

from totally owning the device.

Once again, the problem is adversarial research has conditioned vendors to ignore
these level of findings. They aren't remote root access, not every device has been

compromised. So often, these issues will not be fixed.

This is a real problem. The solution isn't pen-testing and remediation. The solution

is secure development practices. All of these are known.

https://threadreaderapp.com/thread/931826171003723776.html

COMMON PROBLEMS

OLD CODE
BASES

Millions of lines of code
written without security
standards in mind.

OUTDATED
CURRICULUMS

Use of unsafe functions
taught in Computer
Science lectures.

ARM RESEARCH SUMMIT 2020 | KEYNOTE

DEVELOPER
EDUCATION

Lack of accessible

secure coding training
for developers.

SECURITY
NEGLECTED

Security often treated

as an afterthought after

project completion.

11

MITIGATION
MYTHS

Performance concerns
about implementation of
exploit mitigations.

LACK OF
REGULATION

Lack of incentive for
many vendorsto take
security seriously.

AZERIA LABS | MARIA MARKSTEDTER

VULNERABLE
SMART HOMES

12

VULNERABLE
SMART HOMES

The Samsung Smart Things Hub v2

Central controller that allows to remotely connect and manages
loT devices such as: voice assistants, smart plugs, light bulbs,
thermostats, cameras, Doorbells & locks, speakers, & more.

Cisco Talos Intelligence discovered several vulnerabilities that
made it possible for an attacker to control various devices
connected to the Smart Hub.

By Cisco Talos: Vulnerability Spotlight: Multiple Vulnerabilities in Samsung SmartThings Hub

13

Smart Locks

Gain physical access to the home by
unlocking connected smart locks.

Cameras

Remotely monitor occupantsvia
cameras deployed within the home.

Alarm System

Disable the motion detectors used
by the home alarm system.

Smart Plugs

Cause physical damage to devices
connected tosmart plugs.

CVE-2018-3863
CVE-2018-3864
CVE-2018-3865
CVE-2018-3866
CVE-2018-3867
CVE-2018-3872
CVE-2018-3878
CVE-2018-3880
CVE-2018-3897
CVE-2018-3902
CVE-2018-3904
CVE-2018-3905
CVE-2018-3906
CVE-2018-3912
CVE-2018-3913
CVE-2018-3914
CVE-2018-3915
CVE-2018-3916
CVE-2018-3917
CVE-2018-3919
CVE-2018-3925

https://www.smartthings.com/products
https://blog.talosintelligence.com/2018/07/samsung-smartthings-vulns.html

VULNERABLE
SMART HOMES

Amazon Echo

Case Study #2 - Amazon Echo

*Kernel 2.6.37 (!), Arm 32bit

Presentation at Black Hat EU 2017 mentioned «No KASLR
lack of exploit mitigations in Amazon Echo: +No Stack caharies

* No Fortify source

* First overflown dword is the pointer to the output
buffer (response)

*No NX Bit (1)

* No Access Control

ARMIS - 10T SECURITY ¥ sBHEU / BBLACK HAT EVENTS

14

https://www.blackhat.com/docs/eu-17/materials/eu-17-Seri-BlueBorne-A-New-Class-Of-Airborne-Attacks-Compromising-Any-Bluetooth-Enabled-Linux-IoT-Device.pdf

EXPLOIT
MITIGATIONS

For every mitigation, hackers try to find bypass techniques.

Every new mitigation tries to mitigate these techniques in order to prevent
exploitation of existing vulnerabilities or at least increase the effort for attackers.

Combining mitigations is important as they often mitigate against different
exploitation techniques.

Developer /
Security Engineer

No Mitigation Mitigation Bypass Mitigation Bypass Mitigation

Exploitatichiei i | B |
Jin L p .~ !_’ p

15

@
Hacker /

Researcher A _1’_.

EXPLOIT MITIGAT
IMPLEMENTATION

Paper publishedin 2019 lists which embedded
operating systems implement three well-known
exploit mitigations.

Note: Implementationon OS level only means
that these mitigations are supported.
Developers must compile their software with
these mitigationsin order to make use of them.

Regular embedded OS

Mobile embedded OS

Deeply embedded OS

ION

oS ESP ASLR Canarie OS ESP ASLR Canaries
BlackBerry OS v v v Android ™ v v v
i0S™ v v v Win 10 Mob. ™ v v v
Sailfish OS™ v v v Tizen™ v v v
Ubuntu Core ™ v v’ v Brillo™ v v v
Yocto Linux™ v v’ v Windows Embedded ™ v v v
OpenWRT™ v v e Junos OS™ v X v
pClinux * v X v CentOS ™ v v v
NetBSD* v v v IntervalZero RTX* v X v
ScreenOS X X X Enea OSE X X X
QNX ve v’ v VxWorks v X X
INTEGRITY v X X Redactedos 2 X X X
Cisco 10S X X X eCos X X X
Zephyr v X v ThreadX X X X
Nucleus X X X NXP MQX X X X
Kadak AMX X X X Keil RTX X X X
RTEMS X X X freeRTOS X X X
Micrium £ C/OS! v X X TI-RTOS X X X
DSP/BIOS X X X TinyOS X X X
LiteOS X X X RIOT X X X
ARM mbed v X X Contiki X X X
Nano-RK X X X Mantis X X X

A. Abbasi, J. Wetzels, T. Holz and S. Etalle, "Challenges in Designing Exploit Mitigations for Deeply Embedded Systems," 2019

IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, 2019, pp. 31-46.

16

EXPLOIT MITIGATIONS
IN VENDOR BINARIES

2018

Each columnindicates the % of binaries shipped by that vendor withthe givenfeature.

VENDOR NON-EXEC STACK ASLR STACK GUARDS FORTIFY RELRO COUNT
ASUS 1.76 2.40 0.08 2.96 234
360
BELKIN 0.00 0.75 0.00 0.00 1.76 3
actiontec
asus BUFFALO 65.56 0.00 2.20 0.00 65.08 3
att
belkin 2000 DDWRT 98.94 1.17 3.04 0.00 208
buffalo
. DLINK 0.65 0.08 0.86 7.42 14
centurylink
ddwrt LINKSYS 1.53 16.22 0.00 10
5 ‘ .
dlink 1500
linksys MIKROTIK 0.00 0.00 0.00 2.88 24
mikrotik
moxa MOXA 78.12 11.98 9.86 6.64 57
netgear 1000
openwrt OPENWRT 99.59 0.00 0.00 98.72 14
phicomm
PHICOMM 3.58 0.00 0.00 11.44 5
gnap
synology
QNAP 99.59 7.48 68.29 1.23 1.56 22
tenda 500
tomato-shibby TENDA 0.60 0.95 0.00 7.13 16
tp-link
trendnet 0 TP-LINK 0.00 0.86 0.05 6.19 12
ubiquiti
TRENDNET 8.70 0.39 23
UBIQUITI 0.34 1.68 5.88 298
DUPLICATE BINARY
BINARIES HARDENING
CITL showed how common duplicate Percentage of binaries shipped by a given
binaries were between different vendors. vendor with different build-hardening features.

17

https://cyber-itl.org/2019/08/26/iot-data-writeup.html

VULNERABLE

e

S TR C P Y Strcpy()in 20197?!

| Well... makes life easy. |

Takes size parameter.
Does not null-terminate.

A ER
A
STRCPY STRNCPY STRLCPY

Unsafe due to lack of Non-standard function.

parameter to limit the Takes size parameter. , ,
. . Bl rticle: Ci RV130 - It's 2019, but yet: str
input length. Null terminates.

#include <string.h>

/
char xstrcpy(char * restrict s1, '

y
y
y

const char x restrict s2); //) .
/ Vulnerable Function Affected Devices
Unsafe function strcpy in Cisco’s router series:
httpd webserver binary. RvV110W, RV130W, RV215W
I Vulnerability Discovery and Patch

Buffer overflow due to

Discovered by PenTest Partners,
missing input size limits.

patched February 27,2019.

18

https://www.pentestpartners.com/security-blog/cisco-rv130-its-2019-but-yet-strcpy/

EXPLOITATION CVE-2019-166

CANADA & US

Accordingto Rapid7,around 12,000
affected devices were available online at
the time, the predominantlyin US, Canada,
Poland, Romania, Argentina, and India.

Affected: CiscoRV110, RV130, and RV215

12,000 affected devices online

Attacks started two days after patch was available

ARGENTINA

19

EUROPE

INDIA

https://blog.rapid7.com/2019/02/28/cisco-r-rv110-rv130-rv215-unauthenticated-configuration-export-vulnerability-cve-2019-1663-what-you-need-to-know/
https://www.zdnet.com/article/hackers-have-started-attacks-on-cisco-rv110-rv130-and-rv215-routers/

VULNERABLE STRNCPY

Takes size parameter.
Does not null-terminate.

STRCPY STRNCPY STRLCPY
Unsafe due to lack of Non-standard function.
parameter to limit the Takes size parameter.

input length. Null terminates.

#include <string.h>

char xstrncpy(char * restrict sli,
const char * restrict s2,
size_t n);

20

UNSAFE FUNCTIONS

o o Program
strcpy(destination, source); STACK
Libraries
#include <string.h> ctack
char *strcpy(char * restrict sl,
const char * restrict s2); AP eSS

Copies the string pointed to by s2 into

the array pointed to by s1.

1) Return address is saved onto the Stack

2) Buffer is allocated

STACK

Return Address

3) Input string is copied into the buffer

STACK
HELL
0\o

Return Address

21

MAIN

CALL SUBROUTINE

+

é;c§}+ SUBROUTINE

SAVE RETURN ADDRESS

CALL STRCPY

: éi} STRCPY

€§é+

ALLOCATE BUFFER
COPY STRING

RETURNTO SUBROUTINE

BUFFER OVERFLOW
VULNERABILITIES o 555

TAKE INPUT STRING

AAAA
WHAT HAPPENS WHEN INPUT IS LARGER THAN BUFFER? NG AAAAAAAAAARA - o

LONGER THAN BUFFER éil§+

ALLOCATE BUFFER

A Buffer Overflow occurs when a function defines a data
array as a local variable and fails to prevent input data

from overflowing the allocated limits of its buffer. AAAAAAA .
FILL BUFFER
If the overflowing data corrupts nearby local variablesand STACK
critical control-flow data, such as a return address saved AAAA RETURN TO SUBROUTINE
onto the stack, an attacker can use this vulnerability to AAAA
seize control of program flow. AIAAA ;o
S s {g&y SUBROUTINE

GET RETURN ADDRESS

22

BUFFER OVERFLOW
VULNERABILITIES

+

HACKER {%ﬁ%
o TAKE INPUT STRING

AAAAAAAAAAAAAA

HOW DO BUFFER OVERFLOWS WORK?

SEND PAYLOAD STRING AA + i&} T

LONGER THAN BUFFER é;%ﬁ-

ALLOCATE BUFFER

In this example, the input string consists of A’s. In memory,
characters are translated into hex: AAAA =0x41414141

The function expects the return address to be at an exact

position on the stack. Based on that assumption, any value at AAAAAAA ...

that position will be written to the Program Counter, which FILL BUFFER

executes the instruction pointed to by this value (address). cTACK
AAAA RETURNTO SUBROUTINE
AAAA

But 0x41414140this is not a valid address. AAAA .

Acu AlireBs g‘%
q + SUBROUTINE
The program crashes: Segmentation Fault. R {5}

GET RETURN ADDRESS

_ JUMP TO 0X41414141 (AAAA)
SEGMENTATION < @ umPTO ADDRESS
FAULT INVALID ADDRESS

23

BUFFER OVERFLOW

+

VULNERABILITIES Sl

SEND PAYLOAD STRING

WHAT ARE BUFFER OVERFLOWS? LONGER THAN BUFFER

1. Pick aninstruction from an executable
section in process memory (e.g. libc library)

2. Append address of instruction to the input
string at exact position of return address

3. Return address is overwritten with new
address pointing to different instruction

4. Program fetches the return address from
the stack and jumps to it.

Without XN exploit mitigation, the stack is
executable, and shellcode can simply be
executed on the stack.

L . °

.....
cccccccc
lllllll
0000000
oooooooo
.........

TAKE INPUT STRING

AAA{ADDRE55] éif;g STRCPY

AAAAAAAAA

ALLOCATE BUFFER

AAAAAAA.. .
FILL BUFFER
STACK

A A A A RETURNTO SUBROUTINE
AAAA

AAAA

[Address] '25’}

@8”? SUBROUTINE

GET RETURN ADDRESS

JUMP TO [ADDRESS]
JUMP TO ADDRESS

CONTROL OVER PROGRAM FLOW

BUFFER OVERFLOW |
VULNERABILITIES R

AAAAAAAAAAAA{ADDRE”] %ﬁ%? STRCPY
SEND PAYLOAD STRING °
LONGER THAN BUFFER
ALLOCATE BUFFER
Researcher Andy Nguyen created a fully chained exploit for VP
the PS Vita™ consisting of six vulnerabilities. FILL BUFFER
STACK
A A A A RETURN TO SUBROUTINE
AAA A
AAA A ' m
[Address] é:%+ SUBROUTINE
[shellcode] °
[shellcode]
One of the components (MIPS Kernel) was particularly easy
GET RETURN ADDRESS
to exploit because it came without exploit mitigations.
“ Do we have to bypass any security mitigations? Nope, there are none! Zero! EXECUTE INSTRUCTION: JUMP TO [ADDRESS] JUMP TO ADDRESS

CONTROL OVER PROGRAM FLOW
JUMP TO SHELLCODE

Shellcode: Opcode string of a sequence of instructions that achieve
a goal. For example, a reverse shell that establishes a connection to
a remote host for remote shell access to the target device.

25

EXECUTE NEVER (XN)

MITIGATION

u@n
-

XN MITIGATION

The XN mitigation prevents execution from
certain memory regions, including stack.

How to prevent shellcode execution on the stack

XN marks certain memory areas as Not Executable, including the Stack.

The vulnerability still exists; i.e. the return address can still be overwritten to

redirect control-flow.

But when the processor attempts to fetch instructions the stack a translation
fault will occur because the stack’s memory is marked non-executable.

Purpose

Marks certain memory areas, including
the stack, as Not Executable.

Prevents

Executing shellcode on the stack,
making exploitation less trivial.

WITHOUT ASLR

¢ \ \
The addresses of ROP gadgets are @@
static, making the exploit more reliable. Tl

A
AAA
A

> > | 1>

[Address]
[shellcode]
TRANSLATION

FAULT -~ [shellcode]
I

I

l
! JUMP TO [ADDRESS]
EXECUTE INSTRUCTION:

TAKE INPUT STRING

"85t STRPY

{é‘)\v{

ALLOCATE BUFFER
AAAAAAA ...

FILL BUFFER

RETURN TO SUBROUTINE

+

%}}* SUBROUTINE

GET RETURN ADDRESS

JUMP TO ADDRESS

CONTROL OVER PROGRAM FLOW

26

EXECUTE NEVER (XN)
BYPASS

ROP is based on the observation that although an attacker cannot execute
code on XN-marked pages (e.g. Stack), instructions from executable memory
(e.g. libraries) can still be used to execute attacker-chosen instructions.

ROP chain: addresses of instructions (gadgets) that set up registers and can invoke
library functions or API calls. Gadgets are chained together in a way that one
gadget ends with triggering the next.

Only mitigationis XN? | BASE ADDRESS LB

PREDICTABLE
LIBRARY

D

\ START ROP CHAIN

<
~
~
~
~
~

EXECUTE INSTRUCTION

27

AAAA

AAAA

AAAA

[Address]
[Address]
[Address]

JUMP TO [ADDRESS]

XN BYPASS

ROP chain using gadgets in the victim
process’ address space to achieve goal

TAKE INPUT STRING

" 832 | STRCPY

é;cmf{

ALLOCATE BUFFER
AAAAAAA_'_.
FILL BUFFER

RETURNTO SUBROUTINE

+

éjg\“? SUBROUTINE

GET RETURN ADDRESS

JUMP TO ADDRESS

CONTROL OVER PROGRAM FLOW

‘ ‘ When it comes to MIPS, | usually encounter
only one mitigation, ASLR or NX. Only this
year I've seen MIPS routers with both enabled.

- @B1ACKOWL

ASLR MITIGATION

How to make the ROP bypass technique harder

Address Space Layout Randomization (ASLR) introduces randomness into the address space of a TAKE INPUT STRING

process and reduces the predictability of memory addresses for each instantiation of a program.
5% STRCPY

Binaries must be compiled as Position Independent Executable (PIE) for ASLR to be effective. {ﬁé
Previously chosen ROP gadgets won’t work anymore,
. i ALLOCATE BUFFER
since the base address of the library changes.
AAAAAAA..._
FILL BUFFER
STACK
??? A A A A RETURN TO SUBROUTINE
AAAA
C AAAA .
“RANDOMIZED”
sase ADDREss | | anary |1[227? [Address] i%\’? SUBROUTINE
[Address] ’
- [Address]
J GET RETURN ADDRESS
\
\
ROP CHAIN ~~_
I LOE O LR JUMP TO ADDRESS
EXECUTE INSTRUCTION CONTROL OVER PROGRAM FLOW

28

ASLR BYPASS

Bypassing ASLR: Brute Force

This technique relies on the low entropy of 32-bit environments
where not all bits of an address are randomized. Only viable if
process restarts after crash.

Bypassing ASLR: Information Leaks

This bypass involves the use of information leak exploit primitives to
leak relevant addresses from the victim process.

Infer the address of a loaded binary and dynamically set the correct
base address for ROP gadgets.

Various other bypass techniques exist, such as:

Spray-Based Attacks

JIT Spray
ll
Offset2lib attacks # “RANDOMIZED”
’ BASE ADDRESS LIBC
_) ' .’ LIBRARY
Partial Pointer Overwrites { LIBCBASE
, ADDRESS
. \
Side-Channel Attacks \ J
\
+ \\
INFO LEAK BUG {8”}+ ROP CHAIN =< _

EXECUTE INSTRUCTION

29

AAAA

AAAA

AAAA

[Address]
[Address]
[Address]

JUMP TO [ADDRESS]

“ASLRMaedab@rdemcommbmmgms
exploit since the overflow was a one-time
shot. If it fails, there is no second chance.

\3.) - @B1ACKOWL

TAKE INPUT STRING

" 852 | STRCPY

ig;g,

ALLOCATE BUFFER
AAAAAAA ...
FILLBUFFER

RETURNTO SUBROUTINE

+

écj)j; SUBROUTINE

GET RETURN ADDRESS

JUMP TO ADDRESS

CONTROL OVER PROGRAM FLOW

ASLR MITIGATION
BYPASS EFFORT

Effort of Bypassing ASLR

The effort and chosen bypass technigue depends on various factors, such

as the environment, and vulnerability context. Often the bypass requires
an additional vulnerability to succeed.

‘ ‘ For my UPNP vulnerability, if ASLR was
disabled, then my exploit would’ve taken
seconds to execute instead of 30 minutes.

|
|
/
/

- @B1IACKOWL /

Services that restart infinitely following a crash or are present on multiple
devices make this attack more probable.

‘ ‘ ASLR played a big role in complicating this
exploit since the overflow was a one-time
shot. If it fails, there is no second chance.

— - @B1ACKOWL

i\\\

In some cases, attackers don’t manage to successfully bypass ASLR or

spend significantly more time on this bypass than on the rest of the exploit.

30

XN and ASLR are complementary techniques.
Both are designed to increase the effort and
make the exploitation process harder.

ASLR BYPASS EFFORT

e +
@@ Time effort much greater and much less
predictable than for XN bypass.

STACK CANARIES
S T A C K C A N A R Y %%{j} Stack Canaries prevent thgreturn
M I T I G A T I O N \)) address from being overwritten.

Let’s prevent the Return Address from being overwritten.

In our previous example, the saved return address on the stack could be TAKE INPUT STRING
overwritten to take control over the PC and initiate a ROP chain. STACK
Stack Canaries attempt to prevent the return address from being overwritten in {ﬁ% STREPY
the first place. Most stack-buffer overflows can’t be used to start a ROP-chain
without surgically inserting the stack canary value trough an information leak CANARY
vulnerability. RET ADDR ALLOCATE BUFFER
.. . AAAAAAA .. .
A random value is inserted between variables and the return address on the L BUFEER
stack. When the return address is accessed, the canary value is first validated by STACK
a stack canary check.
y A AA A RETURN TO SUBROUTINE
AlAA A
AA A A
«— AAAAG---—--- . 3
. {C}} SUBROUTINE
RET ADDR \\ S
N O \\\
ABORT [VERIFY CANARY

\ GET RETURN ADDRESS

31

STACK CANARY
MITIGATION

How Stack Canaries are bypassed.

GCC Stack Canary and ASLR support:

/I ASLR support

o
9:8;% -fpic
\ -fstack-protector=all // stack canaries

One of the more common ways to bypass the stack canary validation is by using
an information leak to overwrite the stack canary with its own value, making

the corruption undetectable by the validation routine.

This significantly increases the exploitation effort and requires an additional

INFO LEAK BUG é;g;%

vulnerability to leak the current canary value and insert it where it belongs. " 83

PS Vita Exploit Chain: After finding the stack overflow, the hardest part was ~
finding an information leak vulnerability to bypass Stack Canary and ASLR

mitigations. This took the researcher one full week.

‘ ‘ The stack overflow was quickly discovered.
Then, it took me about one full week
searching for a stack cookie leak.

- ANDY NGUYEN

This was probably the hardest part of the whole chain and took me a whole week to solve. | was looking
for uninitialized buffers on stack that would leak the stack canary and return addresses to defeat ASLR.

Surprisingly, | couldn’t find such a bug and it seemed like Sony made sure not to forget to memset ()

any buffer there. After a whole week of reverse engineering and digging through all commands, | found

a very cool bug that would allow us to read arbitrary memory. Discovered on the 2018-06-04.

Highly recommend reading the full write-up:
https://theofficialflow.github.io/2019/06/18/trinity.html

32

+ ADD
F200 ¢,
{CE}’ \\ivﬂ/?y

\
\

bAAAAAAA....
STACK
AAAA
AIAIAA
AlAAA

VALID?)¢——| CANARY

\
RET ADDR ®@---—-— 5 {C;%
\ (]

YES y O

PROCEED

TAKE INPUT STRING

STRCPY

ALLOCATE BUFFER

FILL BUFFER

RETURNTO SUBROUTINE

SUBROUTINE

VERIFY CANARY

GET RETURN ADDRESS

https://theofficialflow.github.io/2019/06/18/trinity.html

STACK CANARY
MITIGATION

How Stack Canaries are bypassed.

Stack canaries don’t protect against overwriting adjacent local
variables and structures on the stack, especially those that are
used as function pointers. This requires more precision and the
right vulnerability context to exploit.

Heap-based vulnerabilities, such as UAFs and heap-overflow
vulnerabilities are not mitigated by stack canaries.

Bypass strategies:

1) Use non-linear stack buffer overflow

2) Use an additional info leak to leak canary
3) Use a heap buffer overflow

Note: we are now significantly constraining the
hacker’s use of vulnerabilities to build an exploit.

33

‘ ‘ There’s been times where I've thrown out
an overflow because it was not possible to
exploit without another bug.

- @B1IACKOWL

(()) CANARY N/A FOR HEAP

i

HEAP >
VULNERABILITY {%}}

OVERWRITE ADJACENT
OBJECT POINTERS

INFO LEAK BUG
OVERWRITE GOT POINTER

DERIVE ADDRESS 5
CALLTO IMPORTED FUNC %‘:C:j)}

un ASLR

BYPASS: INFO LEAK

(()) XN

BYPASS: ROP CHAIN

RELOCATION READ-ONLY

RELRO MITIGATION

When the program is loaded, the linker resolves imported symbols to an
address, placing these addresses in the program's Global Offset Table (GOT)

With specific vulnerability types that lead to an arbitrary write primitive,
hackers can overwrite GOT function pointers to hijack control over the

program flow without overwriting the return address.

The Full RELRO mitigation proactively resolves the GOT entries and marks

the GOT Read-Only to prevent entries from being overwritten.

NEXT GEN
MITIGATIONS

Armv8.3-A Pointer Authentication

Function-pointers, vtables, and return addresses are protected with

a hardware-protected key that is very hard for attackers to leak.

Armv8.5-A Memory Tagging

Many use-after-free and buffer-overflow vulnerabilities cannot be

used to subvert memory consistency.

34

gcc main.c

* 503 fpic // ASLR support
é;%f -fstack-protector=all // stack canaries
-ZNow //RELRO

+

HEAP +
VULNERABILITY é;g):é

OVERWRITE ADJACENT
OBJECT POINTERS

\ INFO LEAK BUG
OVERWRITE GOT POINTER
+
DERIVE ADDRESS {CE%)?

CALLTO IMPORTED FUNC

(tn ASLR

BYPASS: INFO LEAK ‘

(()) XN

BYPASS: ROP CHAIN

ARE YOU GIVING HACKER
A HEADACHE?

Researcher Andy Nguyen created a fully chained exploit for the PS Vita™ consisting of six vulnerabilities.

One of the components (MIPS Kernel) was particularly easy to exploit because it came without exploit mitigations.

G & [2bout MIPS Kemel in PS Vita]
Do we have to bypass any security mitigations?
Nope, there are none! Zero!

- ANDY NGUYEN

With exploit mitigations, the exploit development process can take weeks or even months (depending on the target).

‘ ‘ The stack overflow was quickly discovered.
Then, it took me about one full week

searching for a stack cookie leak.
‘ ‘ There’s been times where |'ve thrown out

an overflow because it was not possible to
exploit without another bug.

- ANDY NGUYEN

- @B1IACKOWL

‘ ‘ The kernel heap overflow was also
discovered quickly. [...] Overall, | think
this took me 3-4 weeks.

- ANDY NGUYEN

35

https://theofficialflow.github.io/2019/06/18/trinity.html

Hacker with migraine

COMBINE.
MITIGATIONS.

DON’T BE A LOW HANGING FRUIT ©

* Harden your device against most common attack vectors.

* Provide secure coding education to your developers.

e Conduct security reviews of source code.
* Hire hackers (Pentesters) to find overlooked vulnerabilities.
e Avoid unsafe functions in new software.

 Combine mitigations to make exploitation harder.

Each mitigation

* Protects against different exploitation techniques
* Makes exploitation more complicated

e Restricts which techniques hacker can use

* Increases time and effort for attackers significantly
e Can make exploits less reliable

* In some cases, can make hacker give up on a vulnerability

36

Website: https://azeria-labs.com/

Mailing list: https://arm-exploitation.com/

Email: contact@azeria-labs.com

Azeria Azeria Labs
@Fox0x01 @azeria_labs

THANK YOU. ©

37

http://azeria-labs.com/
https://arm-exploitation.com/

