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T2T [Majid et al., INFOCOM’18]

Transiently-Powered Computers

• Future sensing devices are tiny, sustainable and 
run forever! 

Flicker [Hester et al., ACM SenSys’17]

WISP [Buettner et al., ACM SenSys’08]
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Prospective Applications

• Deploy and forget

Tiny Batteryless Robot
[Yildirim et al., ACM SenSys’18]

Camaroptera
(Remote Image Sensor)

[Nardello et al., ACM EnsSys’19]

WISPCam
[Naderiparizi et al., EnsSys’16]



A Typical Batteryless Hardware Architecture

Tiny energy buffer

Capacitor as Hourglass

Flicker [Hester et al., ACM Sensys’17]



Intermittent Operation

• Charge/Operate/Die cycle

• Progress of computation?
int sz=0;
char buf[10];
main() {
while(1)
for(i=0..9)
sz++
buf[sz]=‘a’
sleep()

}

main()
while(1)

for(i=0..9)

Reboot

main()
while(1)

for(i=0..9)
sz++

Reboot

main()
while(1)

for(i=0..9)

Volatile State is lost
Registers

Memory (SRAM, DRAM, …)

Timers, I/O state…



Checkpoints

• Use NV memory to capture volatile state.

• e.g., MementOS [Ransford et al., ASPLOS’11]

• Ensures memory consistency/forward progress

COPY

Previous 
Checkpoint

Current
Checkpoint



Task-based Programming Model

• e.g., Chain [Colin et al., OOPSLA 2016]

• Idempotent Tasks

• Fit into capacitor (forward progress)

• Atomic execution 

• memory consistency

• Separate inputs from outputs; e.g. 
via non-volatile channels 

• Explicit control flow



Task-based Intermittent Computing

• Existing  task-based models are inherently non-reactive and static.

• Crucial Problem: cannot change control-flow at run-time to respond to events.
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InK - Intermittent Kernel [ACM SenSys’18]

• Reactive, timely, and event-driven 
batteryless applications.

• Task-threads

• encapsulates successive tasks

• stack-less, single entry, unique priority

• Static priority-based scheduling

• task-thread preemptive



InK - Intermittent Kernel [ACM SenSys’18]

• Tasks and ISRs can activate 
and deactivate other task-
threads

• change control flow 
dynamically.

HIGH_Energy

__shared (int data [10]; int i;);

ENTRY(Sense_Accel){
int read = __sample_acc();
__SET (data[__GET(i)],read);
...
NEXT (Features);

}
...
TASK (Classify){

...
NEXT (...);

}

_interrupt(HIGH_Energy){
...
event . data = dataptr ;
event . size = datasize ;
event . timestamp = __getTime();
__SIGNAL_EVENT (TH1,&_event);
...

}

Sense
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ClassifyFeatures

[TH2]

data[10];

i;

Activate

Transmit Sleep

Communication
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Switch to [TH 1]



TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• The programmer burden of task-based 
systems is huge!

• Identification of the tasks

• Control flow 

• Data expiration

• Checkpoint systems

• Scalability issues (Pointers)

• Time inconsistencies



TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• Time consistency violations.

• Data expiration

• Time misalignment

• Timely branching



TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• C language support

• Time consistency handling 

• Timely execution

• No programmer burden



TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• C language support

• Memory management for pointers

• Constant worst-case checkpoint size

• Stack segmentation



TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• An intermittent activity recognition application with timing constraints.

MSP430FR5969



Future Proposal: Energy Scaling Processor Architecture

• Today’s batteryless sensors are based on conventional hardware 
architectures  

• the  software can  control  the  energy  consumption  only  to  some extent



Future Proposal: Energy Scaling Processor Architecture

• Tiny cores that are energy-input responsive

• Fine-grained control of energy consumption



Future Proposal: Energy Scaling Processor Architecture

• Challenges

• Multi-core Design and Implementation

• volatile/non-volatile

• synch/async

• Developing a Programming Model 
(Runtime)

• Language constructs

• Adaptation/Approximate Computing



Conclusions

• Our runtimes InK and TICS for intermittent computing

• InK [Yildirim et al., SenSys’18]

• Reactive task-based execution

• TICS [Kortbeek et al., ASPLOS’20] 

• Removes cognitive burden and enables timely execution

• Future: Energy-responsive software and hardware

• Energy-responsive and dynamic adaptation at run-time via many cores


