
Kasım Sinan Yıldırım
Assistant Professor

Department of Information Engineering and Computer Science,

University of Trento, Italy

The Today and Future of
Intermittent Computing for
Sustainable Sensing
Arm Research Summit 2020

Acknowledgements & Credits

T2T [Majid et al., INFOCOM’18]

Transiently-Powered Computers

• Future sensing devices are tiny, sustainable and
run forever!

Flicker [Hester et al., ACM SenSys’17]

WISP [Buettner et al., ACM SenSys’08]

Solar

Radio Frequency

Ambient Energy Sources

Batteryless Devices

Prospective Applications

• Deploy and forget

Tiny Batteryless Robot
[Yildirim et al., ACM SenSys’18]

Camaroptera
(Remote Image Sensor)

[Nardello et al., ACM EnsSys’19]

WISPCam
[Naderiparizi et al., EnsSys’16]

A Typical Batteryless Hardware Architecture

Tiny energy buffer

Capacitor as Hourglass

Flicker [Hester et al., ACM Sensys’17]

Intermittent Operation

• Charge/Operate/Die cycle

• Progress of computation?
int sz=0;
char buf[10];
main() {
while(1)
for(i=0..9)
sz++
buf[sz]=‘a’
sleep()

}

main()
while(1)

for(i=0..9)

Reboot

main()
while(1)

for(i=0..9)
sz++

Reboot

main()
while(1)

for(i=0..9)

Volatile State is lost
Registers

Memory (SRAM, DRAM, …)

Timers, I/O state…

Checkpoints

• Use NV memory to capture volatile state.

• e.g., MementOS [Ransford et al., ASPLOS’11]

• Ensures memory consistency/forward progress

COPY

Previous
Checkpoint

Current
Checkpoint

Task-based Programming Model

• e.g., Chain [Colin et al., OOPSLA 2016]

• Idempotent Tasks

• Fit into capacitor (forward progress)

• Atomic execution

• memory consistency

• Separate inputs from outputs; e.g.
via non-volatile channels

• Explicit control flow

Task-based Intermittent Computing

• Existing task-based models are inherently non-reactive and static.

• Crucial Problem: cannot change control-flow at run-time to respond to events.

Sense

Accel.
ClassifyFeatures

TransmitSleep

Sample Temp

EWMA

Activity Recognition

(activity threshold)

Temperature Sensing

(periodic)

Communication

(high energy)

InK - Intermittent Kernel [ACM SenSys’18]

• Reactive, timely, and event-driven
batteryless applications.

• Task-threads

• encapsulates successive tasks

• stack-less, single entry, unique priority

• Static priority-based scheduling

• task-thread preemptive

InK - Intermittent Kernel [ACM SenSys’18]

• Tasks and ISRs can activate
and deactivate other task-
threads

• change control flow
dynamically.

HIGH_Energy

__shared (int data [10]; int i;);

ENTRY(Sense_Accel){
int read = __sample_acc();
__SET (data[__GET(i)],read);
...
NEXT (Features);

}
...
TASK (Classify){

...
NEXT (...);

}

_interrupt(HIGH_Energy){
...
event . data = dataptr ;
event . size = datasize ;
event . timestamp = __getTime();
__SIGNAL_EVENT (TH1,&_event);
...

}

Sense

Accel.
ClassifyFeatures

[TH2]

data[10];

i;

Activate

Transmit Sleep

Communication

[TH1]

Switch to [TH 1]

TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• The programmer burden of task-based
systems is huge!

• Identification of the tasks

• Control flow

• Data expiration

• Checkpoint systems

• Scalability issues (Pointers)

• Time inconsistencies

TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• Time consistency violations.

• Data expiration

• Time misalignment

• Timely branching

TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• C language support

• Time consistency handling

• Timely execution

• No programmer burden

TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• C language support

• Memory management for pointers

• Constant worst-case checkpoint size

• Stack segmentation

TICS - Time Sensitive Intermittent Computing [ASPLOS’20]

• An intermittent activity recognition application with timing constraints.

MSP430FR5969

Future Proposal: Energy Scaling Processor Architecture

• Today’s batteryless sensors are based on conventional hardware
architectures

• the software can control the energy consumption only to some extent

Future Proposal: Energy Scaling Processor Architecture

• Tiny cores that are energy-input responsive

• Fine-grained control of energy consumption

Future Proposal: Energy Scaling Processor Architecture

• Challenges

• Multi-core Design and Implementation

• volatile/non-volatile

• synch/async

• Developing a Programming Model
(Runtime)

• Language constructs

• Adaptation/Approximate Computing

Conclusions

• Our runtimes InK and TICS for intermittent computing

• InK [Yildirim et al., SenSys’18]

• Reactive task-based execution

• TICS [Kortbeek et al., ASPLOS’20]

• Removes cognitive burden and enables timely execution

• Future: Energy-responsive software and hardware

• Energy-responsive and dynamic adaptation at run-time via many cores

