
Faculty Development Program’23:
Verification

Mansi Chadha

Abhinav Gaur

I am currently managing the SoC Verification team for General
Purpose Micro (GPM) products in ST, Greater Noida.

I have extensively worked on MCUs and MPUs across Industrial &
Automotive applications and contributed to multiple successful tape-
outs.

I have driven key initiatives in testbench standardization, regression
automation, coverage, GLS, etc. In formal verification, I have helped
in establishing many areas of its application. I have a total of 22
publications/presentations in various forums and 2 patents in the
area of functional safety.

About myself

2

Agenda

#1

Levels of Verification

#2 Purpose of Verification

#3 Verification Platforms

#4

Introduction
#5

#6

Research areas in
verification

#7

Popular Verification
Methodologies
SV and UVM

Verification Sign-Off
Requirements and Criteria

3

Introduction

Specification

Design

Logical Synthesis

System Partitioning

Floor planning

Placement

Routing

ASIC Design Flow

5

RTL

Simulations

Gate level

Simulations

ASIC Design Flow

• From Specifications to RTL

• Human Translation

• Designer understands the spec and writes the RTL in Verilog, VHDL, etc.

• From RTL to Netlist to Layout to Physical

• Mostly automated translation

• Constraints from designer are understood by timing team while doing static timing analysis (STA)

• The main source of bugs is

• Specs to RTL translation

• Gate level simulations on final netlist with timing information to validate the correctness of

constraints

6

ASIC Implementation Flow

1. Write RTL language

2. Verify RTL and find bugs

3. Fix RTL

4. Verify RTL and find bugs

5. Repeat from 3 until finished

6. Synthesize to netlist and move further on implementation

7. Run Gate level simulations on netlist along with timing information in SDF

(Standard Delay Format)

7

Purpose of Verification

What is meant by Verification?

• Verification:

• The process or an instance of establishing the truth or validity of something.

• The process of demonstrating the intent of a design is preserved in its

implementation.

• Does not ensure that specification is correct…

9

10

• To prove that the design behavior matches its specifications/description in the

documentation

• To use the design in a same way as end user before it gets taped-out

• Cost of fixing a bug once chip has been manufactured is huge!

Why is it needed?

Verification

RTL

Documentation

Low Power
(UPF/CPF)

Timing
Constraints

What all is verified?

11

Verification Platforms

• Dynamic: Stimulus generated by user

• Simulation

• Accelerated Verification (Emulation, FPGA)

• Static: No stimulus needed, proves like a theorem

• Formal Verification

Verification platforms

13

• System Verilog/UVM based testbench at IP/SS levels to generate stimulus to

program the IPs as well drive/monitor the interfaces

• At SoC level, typically CPUs exist to program the IPs, hence the need of C-based

tests. The external interfaces are driven/monitored through system Verilog/UVM

based components

• Randomization to generate stimulus more efficiently

• Coverage to measure generation of all possible stimulus and find gaps in the

environment

Simulation

14

HW accelerated verification

15

Flow showing Early SW Development and H/W Verification using Pre-silicon Emulation
Platform during SI Development

• Instead of RTL, simulations are run on the actual netlist

• Can be run without delay (as part of bringup) and then with timing information in

the form of SDF (Standard Delay Format) in different timing corners

• Confidence building mechanism, not a way of signing-off timing or netlist

equivalence to RTL

• Aims at verifying constraints applied correctly by physical design team, glitches

during power-up/boot/shut-down sequence

• To avoid any surprises on running tests on actual netlist with delays in places (RTL

is zero delay)

Gate level simulations (GLS)

16

• Mathematical approach of proving/disproving the effectiveness of a statement

• Assumptions added to avoid false failures

• Design specifications are converted to assertions which act as checkers

• Stimulus comes for free!

• Due to its exhaustive nature, cannot be applied for complex designs. Needs to be

smartly applied in the right areas of the design.

• A combination of formal and dynamic techniques is recommended for faster sign-

off

Formal

17

Simulation-based versus Formal Verfication

DUV

Inputs Outputs

DUV

Test
properties

Test
results

Assumptions Pass

or
Fail

Find

counter-example

❑ Dynamic

❑ Cannot cover all possible

cases

❑ Possibility of surviving

(corner case) bugs

❑ Static

❑ Exhaustive : equivalent to

simulating all cases in

simulation but fully static

❑ Requires modeling of the

context (assumptions)

❑ Faces complexity limitations

Levels of Verification

• IP Verification

• SS Verification

• SoC Verification

Stages of Verification

20

Functional Verification at different levels

System On chip
Sub-system’s IP’s

SoC Verification

• Connectivity (Formal)

• Interoperability (Simulation)

• Performance - Application
Scenarios
(Emulation/Simulation)

SS Verification

▪ Connectivity (formal)

▪ Interoperability
(simulation)

▪ Performance - Application
Scenarios
(Emulation/Simulation)

IP Verification

▪ Functionality (UVM)

▪ Protocol Compliance (Formal)

▪ Standard Compliance
(Formal/Simulation)

▪ Performance - Application
Scenarios
(Emulation/Simulation)

Mansi Chadha : About myself

I am currently managing the Digital IP Verification team for General
Purpose Micro (GPM) products in ST, Greater Noida.

I bring in a demonstrated history of IP/SubSystem/SoC Level
Verification and Verification IP portfolio.

I have extensive experience in UVM/SystemVerilog/
C/C++/SystemC/Transaction Level Modeling (TLM), Object-Oriented
concepts and Formal Verification.

I have expertise in project management comprising of defining
Verification Methodologies, Verification Milestones and Roadmaps,
Execution, and mitigation plans.

I am a result oriented and self-driven professional with leadership
qualities of managing multiple Metric Driven Verification projects
across different geographies and having multiple technical
publications//presentations/articles, and patents.

22

Agenda

#1

Levels of Verification

#2 Purpose of Verification

#3 Verification Platforms

#4

Introduction
#5

#6

Research areas in
Verification

#7

Popular Verification
Methodologies
SV and UVM

Verification Sign-Off
Requirements and Criteria

23

Popular Verification Methodologies
SV and UVM

24

Overview

25

UVM (Universal Verification
Methodology) and

SystemVerilog (SV) are two
popular methodologies used
in the verification of digital

circuits and systems

While both UVM and
SystemVerilog can be used

to build verification
environments

UVM often used in
combination with

SystemVerilog to build
verification environments

SV : System Verilog

26

Is a hardware description and verification language that provides a rich set of features for design
and verification.

It includes support for data types, classes, interfaces, and other programming constructs that make
it easier to write more complex and sophisticated verification environments.

Provides the programming constructs needed to implement a comprehensive and sophisticated
verification environment.

The SystemVerilog testbench, on the other hand, is a more general-purpose verification
environment that can be designed and implemented using SystemVerilog constructs.

It is also used to implement assertions to check a particular design functionality : called as SVA
(System Verilog Assertions)

UVM (Universal Verification Methodology)

27

Is a standard developed by Accelera

It is both a methodology and a class library
for building advanced reusable verification
component

Provides the best framework to achieve
coverage-driven verification (CDV) or Metric
Driven Verification (MDV)

The verification components based on UVM
are called UVCs (Universal Verification
Components)

28

UVM (Universal Verification Methodology)

UVM is a verification methodology that provides a standard and reusable architecture

-> For verifying digital circuits and systems.

-> It provides a library of components and classes that can be used to build a

verification environment, including testbenches, agents, and scoreboards

UVM also provides a standard way of defining, configuring, and communicating between these
components, making it easier to reuse verification components and ensure consistency across different
verification projects

Useful Definitions

30

UVM architecture

• A UVM agent collects together a group of verification

components focused on a specific pin-level interface

• A generic agent has:

• A sequencer for generating traffic

• Driver to drive the DUT

• Monitor

• The monitor is independent of the driving logic

• Agent has standard configuration parameters

Driver Monitor

Config
Sequencer

Agent

Analysis port

Virtual

interface

UVM architecture

• Each Agent can be configured either as active or passive

• An active UVC is composed by an active section and a

passive section

• A passive UVC is composed by a passive section only

Driver Monitor

Config
Sequencer

Agent

Analysis port

Virtual

interface

Active section

Passive section

UVM architecture

Driver Monitor

Config
Sequencer

Agent

Analysis port

Virtual

interface

Point-to-point

TLM channel

Point-to-multipoint

TLM channel

• Sequencer and driver are connected with a point-to-

point TLM connection

• Monitor can be connected to external verification

components through a point-to-multipoint TLM channel

called analysis port

• The analysis port can be left unconnected without worries

if there are no components interested to the data from the

monitor

UVM architecture

• UVM Drivers and UVM monitors act as transactors

• The driver converts TLM packets from sequencer into

pin-level signals

• The monitor do the opposite converting pin-level signals

into TLM packets flowing through an analysis port

Driver Monitor

Config
Sequencer

Agent

Analysis port

Virtual interface
Transactors

UVM Sequences

• A sequencer control the generation of

random stimulus by executing sequences

• A sequence capture a meaningful stream of

transactions

• The simplest sequence is the atomic packet

exchanged between sequencer and driver (UVM

sequence item)
Driver

Monitor

Config
Sequencer Agent

Analysis port

Virtual interface

Sequence

UVM Verification Environment

DUTStimulus Response
Driver

Monitor Monitor

Scoreboard

Sequence

Generators

Test Harness

User Test

UVC

UVC

Used to configure:

• Layout of the environment

• Topology of the environment

• Sequence of transactions

Analysis component that checks

the DUT behave correctly.

Usually compares transactions

from at least 2 agents

Verification Sign-Off Criteria

37

Verification Sign-Off Requirements

38

1. To start with a comprehensive verification plan

2. Covering every functional requirement defined in design specifications,
applicative use-cases, the architectural definition, and any other relevant documents

4. Tests are then developed to cover every feature of the verification plan

-> Those tests are run and debugged (Running Regression)

5. To identified issues/bugs within the design

-> This process iterates until the agreed level of coverage is met

Verification
signoff

Verification Sign-Off Criteria

Verification sign-off is granted if the following
requirements are met:

•Code Coverage is 100%​ or Justified

•Functional Coverage is 100%

•All checkers written in the form assertions should get passed
completely.

•Formal checks (Connectivity, Registers, unreachability etc..) passed or
justified.

•Bus protocol checking pass.

39

Types of Coverage
• Associated to verification closure

• Provide a measure of the verification completeness

• Should answer the questions

• “Have I exercised all expected design states?”

• Did we do all the tests that we wanted to do based on verification

plan?

• Did we try all combination of inputs/outputs?

• Code coverage

• Automatically built coverage space

• Typically: code coverage: did I exercise all the lines of
code of my design ?

• Functional Coverage

• Requires engineering time to model coverage space

• Typically: did I cover all the functionality, states, scenarios

• Difficult to model, but easy to analyze

• Mandatory with constrained random

Buffer States
empty

low_threshold

normal_load

high_threshold

full

1:s <= a;

2:if (cond) then

3: s <= b;

4:else

5: s <= c;

6:end if;

Quality Metrics : Code Coverage

Code coverage -> Have all lines of RTL been exercised ?

Metrics used

• Block / Line / Statement Coverage

• how many times each line is executed

• Target 100% explained

• FSM arc / state / transition Coverage

• All states are reached & all the possible state transition have happened

• Easier to analyze than block + condition

• Target 100%

• Expression Coverage

• To exercise all expression combination

• Toggle Coverage

• Which bits in the RTL has toggled

• Used for connectivity correctness at integration level

• Target 100%

Quality Metrics : Functional/Checker/Test Coverage

Functional coverage

• Define in verification plan, it list the functionality / state of design to be covered

• Both specification and implementation are handwritten (reuse is a must)

• Specification : verification plan

• Implementation : cover point in testbench

Checker coverage

• Assertion coverage → Does all my assertion has been activated?

• Checkers → Does all my checkers has been activated?

Test coverage

• Have all my tests been run?

• What is the status of each (Pass/Fail)?

Coverage Driven Approach

• Why write directed tests if you can have randomization do most of

the work for you?

• But with Random – how do you know what you are testing?

• Coverage (various kinds) is the key metric

• Verification plan defines coverage goals

• Simulations produce coverage information

• Cumulative “total coverage” analysis done iteratively to steer further work

DUV

Functional

Coverage

Code

Coverage

Coverage Analysis

010011

111000

010101

100101

Assertions

Ideally, we are done when…

• 100% complete on test-bench work.

• No pending checkers, monitors, stimulus

generation.

• 100% tests are run in regression on final

build, no known failures.

• 100% functional coverage:

• We have implemented all functional coverage

points and we covered them, here is the

report.

• 100% code coverage:

• We have done code coverage, no known

coverage holes.

• We can’t do much about over-design in the

library we are reusing.

• 100% coverage on corner cases

• We tried to break the design and we couldn’t.

• We tried known error scenarios and design

recovers gracefully

• 100% coverage on real life scenarios

(Applicative use cases):

• We have run “realistic” scenarios, no known

failures.

• We have run simulations with real FW, no known

failures.

• We are trending downwards and flat on bug

finding cycle.

• Let’s ship it.

44

Research areas in Verification

45

Research areas in Verification

46

Main research areas are :

• To shorten the whole Verification Completion
Cycle

• Improve the Quality of Verification

Why there is a need for research:

• Since many years now, biggest challenge in verification techniques is to
provide scalable solutions to find problem/bugs in the design

• This worsen with increasing complexity of the designs and thus results into
larger number of bug escaping into silicon.

• That’s why there is an urge and immediate need to research for better and
faster techniques, like Automation, Mutation, or through Artificial
intelligence/Machine learning

What can be done in research:

• Since hardware verification is very costly in terms of time and
resources, verification engineers make huge efforts to reduce
the whole verification project cycle time by increasing
automation of this process

• Artificial intelligence is an ideal candidate in these cases

• Machine learning in verification can also be used for multiple
cases: generating complete and random range of stimuli
needed to bring verified design into all its functional states;
analyzing test results; filling coverage gaps and so on...

• To improve the quality of verification through Verification
Qualification or Mutation

In conclusion:

AI/ML is often introduced into
these systems to deal with such
complexity and uncertainty!

Challenge:

Is to choose which parts of verification
environment can be best suitable for
automation and which verification
techniques are most appropriate to
provide to automatic engines.

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Thank you

http://www.st.com/trademarks

	Default Section
	Slide 1: Faculty Development Program’23: Verification
	Slide 2: About myself
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: ASIC Design Flow
	Slide 6: ASIC Design Flow
	Slide 7: ASIC Implementation Flow
	Slide 8: Purpose of Verification
	Slide 9: What is meant by Verification?
	Slide 10: Why is it needed?
	Slide 11: What all is verified?
	Slide 12: Verification Platforms
	Slide 13: Verification platforms
	Slide 14: Simulation
	Slide 15: HW accelerated verification
	Slide 16: Gate level simulations (GLS)
	Slide 17: Formal
	Slide 18: Simulation-based versus Formal Verfication
	Slide 19: Levels of Verification
	Slide 20: Stages of Verification
	Slide 21: Functional Verification at different levels
	Slide 22: Mansi Chadha : About myself
	Slide 23: Agenda
	Slide 24: Popular Verification Methodologies SV and UVM
	Slide 25: Overview
	Slide 26: SV : System Verilog
	Slide 27: UVM (Universal Verification Methodology)
	Slide 28
	Slide 29: UVM (Universal Verification Methodology)
	Slide 30: Useful Definitions
	Slide 31: UVM architecture
	Slide 32: UVM architecture
	Slide 33: UVM architecture
	Slide 34: UVM architecture
	Slide 35: UVM Sequences
	Slide 36: UVM Verification Environment
	Slide 37: Verification Sign-Off Criteria
	Slide 38: Verification Sign-Off Requirements
	Slide 39: Verification Sign-Off Criteria
	Slide 40: Types of Coverage
	Slide 41: Quality Metrics : Code Coverage
	Slide 42: Quality Metrics : Functional/Checker/Test Coverage
	Slide 43: Coverage Driven Approach
	Slide 44: Ideally, we are done when…
	Slide 45: Research areas in Verification
	Slide 46: Research areas in Verification
	Slide 47

